scholarly journals Baicalin Ameliorates Collagen-Induced Arthritis Through the Suppression of Janus Kinase 1 (JAK1)/Signal Transducer and Activator of Transcription 3 (STAT3) Signaling in Mice

2018 ◽  
Vol 24 ◽  
pp. 9213-9222 ◽  
Author(s):  
Chunxiao Wang ◽  
Yong Song ◽  
Xin Wang ◽  
Ruijun Mao ◽  
Lijun Song
Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1509-1519 ◽  
Author(s):  
Marieke Ruiter ◽  
Patricia Duffy ◽  
Steven Simasko ◽  
Robert C. Ritter

Reduction of food intake and body weight by leptin is attributed largely to its action in the hypothalamus. However, the signaling splice variant of the leptin receptor, LRb, also is expressed in the hindbrain, and leptin injections into the fourth cerebral ventricle or dorsal vagal complex are associated with reductions of feeding and body weight comparable to those induced by forebrain leptin administration. Although these observations suggest direct hindbrain action of leptin on feeding and body weight, the possibility that hindbrain leptin administration also activates the Janus kinase/signal transducer and activator of transcription 3 (STAT3) signaling in the hypothalamus has not been investigated. Confirming earlier work, we found that leptin produced comparable reductions of feeding and body weight when injected into the lateral ventricle or the fourth ventricle. We also found that lateral and fourth ventricle leptin injections produced comparable increases of STAT3 phosphorylation in both the hindbrain and the hypothalamus. Moreover, injection of 50 ng of leptin directly into the nucleus of the solitary tract also increased STAT3 phosphorylation in the hypothalamic arcuate and ventromedial nuclei. Increased hypothalamic STAT3 phosphorylation was not due to elevation of blood leptin concentrations and the pattern of STAT3 phosphorylation did not overlap distribution of the retrograde tracer, fluorogold, injected via the same cannula. Our observations indicate that even small leptin doses administered to the hindbrain can trigger leptin-related signaling in the forebrain, and raise the possibility that STAT3 phosphorylation in the hypothalamus may contribute to behavioral and metabolic changes observed after hindbrain leptin injections.


2019 ◽  
Vol Volume 12 ◽  
pp. 497-508
Author(s):  
Azza Gaber Antar Farag ◽  
Rehab Samaka ◽  
Eman Nabil Elshafey ◽  
Wafaa Ahmed Shehata ◽  
Eman Gamal El Sherbiny ◽  
...  

Cancers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 526 ◽  
Author(s):  
Fiona Tan ◽  
Tracy Putoczki ◽  
Jieqiong Lou ◽  
Elizabeth Hinde ◽  
Frédéric Hollande ◽  
...  

Signal transducer and activator of transcription 3 (STAT3) signaling is a major driver of colorectal cancer (CRC) growth, however therapeutics, which can effectively target this pathway, have so far remained elusive. Here, we performed an extensive screen for STAT3 inhibitors among a library of 1167 FDA-approved agents, identifying Ponatinib as a lead candidate. We found that Ponatinib inhibits STAT3 activity driven by EGF/EGFR, IL-6/IL-6R and IL-11/IL-11R, three major ligand/receptor systems involved in CRC development and progression. Ponatinib was able to inhibit CRC migration and tumor growth in vivo. In addition, Ponatinib displayed a greater ability to inhibit STAT3 activity and mediated superior anti-proliferative efficacy compared to five FDA approved SRC and Janus Kinase (JAK) inhibitors. Finally, long-term exposure of CRC cells to Ponatinib, Dasatinib and Bosutinib resulted in acquired resistance to Dasatinib and Bosutinib occurring within six weeks. However, acquired resistance to Ponatinib was observed after long-term exposure of >4 months. Overall, our results identify a novel anti-STAT3 property of Ponatinib and thus, Ponatinib offers a potential therapeutic strategy for CRC.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jia Yang ◽  
Jiaojiao Zhou ◽  
Xin Wang ◽  
Ling Ji ◽  
Siwen Wang ◽  
...  

The aim of the present study was to investigate the effect of erythropoietin (EPO) on contrast-induced nephrology (CIN) in vivo and in vitro. Male C57BL/6J mice were divided into four groups: control, CIN (iohexol 6.0 g/kg), EPO (3,000 IU/kg), and CIN+EPO. Hematoxylin and eosin (H&E) staining and biochemical index analyses were performed to evaluate renal injury. The cellular proliferation rate was detected using the Cell Counting Kit-8 (CCK-8) assay. In addition, a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and flow cytometric assay were used to assess the apoptosis of tissue and cells, respectively. Renal protein expression associated with apoptosis, pyroptosis, and signaling pathways was determined by Western blot (WB) assays for tissues and cells. The results showed that EPO significantly decreased serum creatinine, blood urea nitrogen, and cystatin C levels and alleviated renal histological changes in vivo. The protein levels of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway components were overexpressed in the EPO treatment group. Furthermore, EPO suppressed the cell apoptosis and pyroptosis; decreased the protein levels of cleaved caspase-3, Bax, gasdermin D (GSDMD), and caspase-1; and enhanced the expression of Bcl-2. In summary, EPO could exert renoprotective effect by activating the JAK2/STAT3 signaling pathway, which may be a novel potential therapy for the treatment of CIN in the clinic.


Pharmacology ◽  
2019 ◽  
Vol 105 (3-4) ◽  
pp. 181-189 ◽  
Author(s):  
ZhengHu Xu ◽  
Wei Liu ◽  
Huai Huang

Astragaloside IV (AS-IV) is an active component extracted from the traditional Chinese herbal medicine. AS-IV is a neuroprotective component in cerebral ischemic models. However, roles of AS-IV in cerebral ischemia-reperfusion (I/R) injury and the underlying mechanisms are rarely investigated. The role of AS-IV in oxygen – glucose deprivation reoxygenation (OGD/R)-induced cell proliferation and apoptosis assays were analyzed by Cell Counting Kit-8 and Flow cytometric. Western Blot assays were performed to measure the related expression levels in SH-SY5Y cells. Meanwhile, activities of reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) in OGD/R-induced cells were determined by relative commercial kits. AS-IV was also used in cerebral I/R rat model, aimed to investigate the effects on cerebral infarct. The results indicated that OGD/R suppressed viability, enhanced apoptosis, which could be reversed by AS-IV treatment. Compared with the control group, the expression of p-JAK2 and p-STAT3 was significantly increased by AS-IV (60 μg/mL) under the OGD/R condition. Furthermore, AS-IV (60 μg/mL) treatment markedly increased SOD activity, whereas significantly decreased MDA activity and production of ROS in OGD/R-induced cells. The protective effects of AS-IV mentioned above were weaken or abolished while adding JAK2 inhibitor AG490. In addition, the effects of AS-IV on Janus kinase 2 and signal transducer and activator of transcription 3 (JAK2/STAT3) signaling in cerebral I/R injury were also verified in vivo. AS-IV protected against cerebral I/R injury and reversed by AG490. Therefore, in vitro and in vivo analyses suggested that AS-IV may protect against cerebral I/R injury partly mediated by JAK2/STAT3 signaling pathway and antioxidative effects. AS-IV may serve as a novel therapeutic regimen for cerebral I/R injury.


Sign in / Sign up

Export Citation Format

Share Document