scholarly journals MicroRNA‑let‑7e regulates the progression and development of allergic rhinitis by targeting suppressor of cytokine signaling 4 and activating Janus kinase 1/signal transducer and activator of transcription 3 pathway

Author(s):  
Lihua Li ◽  
Shaorong Zhang ◽  
Xunshuo Jiang ◽  
Yuehui Liu ◽  
Ke Liu ◽  
...  
2019 ◽  
Vol 18 ◽  
pp. 153303381989680
Author(s):  
Di Wu ◽  
Wei Dong ◽  
Kun Fang ◽  
Mengchang Wang

Objective: This study aimed to investigate the effect of tetra-arsenic tetra-sulfide on treating multiple myeloma and its potential regulation on suppressor of cytokine signaling 1 methylation-mediated Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway. Methods: Tetra-arsenic tetra-sulfide with different concentrations were used to treat U266 cells, and cell viability was measured at 12, 24, and 48 hours with 0 μM tetra-arsenic tetra-sulfide treatment as control by Cell Counting Kit-8 assay. Suppressor of cytokine signaling 1 methylation and expression were determined by methylation-specific polymerase chain reaction, quantitative polymerase chain reaction, and Western blot, respectively, in U266 cells and normal plasma cells and in U266 cells treated by tetra-arsenic tetra-sulfide. Then, rescue experiments were performed by transfecting suppressor of cytokine signaling 1 small interfering RNA into tetra-arsenic tetra-sulfide-treated U266 cells. Besides, phosphor–Janus kinase 2, Janus kinase 2, phospho–signal transducer and activator of transcription 3, and signal transducer and activator of transcription 3 expressions were determined by Western blot. Results: Tetra-arsenic tetra-sulfide inhibited U266 cell viability efficiently in a dose- and time-dependent manner. Suppressor of cytokine signaling 1 methylation was higher while suppressor of cytokine signaling 1 expression was lower in U266 cells compared to normal plasma cells; when treated by tetra-arsenic tetra-sulfide, suppressor of cytokine signaling 1 methylation was decreased while suppressor of cytokine signaling 1 expression was increased in U266 cells, along with the reduced phospho–Janus kinase 2 and phospho–signal transducer and activator of transcription 3 expressions. Then, suppressor of cytokine signaling 1 small interfering RNA enhanced the cell viability and phospho–Janus kinase 2 as well as phospho–signal transducer and activator of transcription 3 expressions in both tetra-arsenic tetra-sulfide treatment-free and tetra-arsenic tetra-sulfide-treated U266 cells. Conclusion: Tetra-arsenic tetra-sulfide exhibits good killing effect on multiple myeloma cells via repressing suppressor of cytokine signaling 1 methylation and downstream Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway, which might serve as a potential treatment option for multiple myeloma.


2019 ◽  
Vol Volume 12 ◽  
pp. 497-508
Author(s):  
Azza Gaber Antar Farag ◽  
Rehab Samaka ◽  
Eman Nabil Elshafey ◽  
Wafaa Ahmed Shehata ◽  
Eman Gamal El Sherbiny ◽  
...  

2011 ◽  
Vol 80 (2) ◽  
pp. 476-482 ◽  
Author(s):  
Eric Y. Denkers ◽  
David J. Bzik ◽  
Barbara A. Fox ◽  
Barbara A. Butcher

ABSTRACTThe intracellular protozoanToxoplasma gondiiis well known for its skill at invading and living within host cells. New discoveries are now also revealing the astounding ability of the parasite to inject effector proteins into the cytoplasm to seize control of the host cell. This review summarizes recent advances in our understanding of one such secretory protein called ROP16. This molecule is released from rhoptries into the host cell during invasion. The ROP16 molecule acts as a kinase, directly activating both signal transducer and activator of transcription 3 (STAT3) and STAT6 signaling pathways. In macrophages, an important and preferential target cell of parasite infection, the injection of ROP16 has multiple consequences, including downregulation of proinflammatory cytokine signaling and macrophage deviation to an alternatively activated phenotype.


Sign in / Sign up

Export Citation Format

Share Document