Prediction Analysis of Extreme Water Level of Storm Surge along the Coast of Bohai Sea

2020 ◽  
Vol 07 (02) ◽  
pp. 37-43
Author(s):  
欣 刘
2014 ◽  
Vol 989-994 ◽  
pp. 2288-2291 ◽  
Author(s):  
Yong Qiang Zhang ◽  
Qian Lan Leng ◽  
Ze Jian Hu ◽  
Zi Chen Zhu ◽  
Wan Jun Zhang ◽  
...  

In this paper, a numerical model of the coupling between astronomical tide and storm surge based on hydraulic model for estuary and coast (ECOM) is confirmed to be suitable for simulation of stormsurge in the Bohai Sea. The spatial distribution of extreme water level and storm current field caused by typhoons in October 2003 are simulated.It shows that extreme water level in deep water are smaller than shallow water and the spatial distribution of extreme water level is influenced by topography.Flow filed in Bohai Sea waters takes on an fluctuation in flow field, compensatory flow and other obvious features during storm surge, compared storm surge with astronomical tide, which is a significant difference in flow filed.


2015 ◽  
Vol 14 (2) ◽  
pp. 237-244 ◽  
Author(s):  
Sheng Dong ◽  
Junguo Gao ◽  
Xue Li ◽  
Yong Wei ◽  
Liang Wang

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1509
Author(s):  
Yuanyi Li ◽  
Huan Feng ◽  
Guillaume Vigouroux ◽  
Dekui Yuan ◽  
Guangyu Zhang ◽  
...  

A storm surge is a complex phenomenon in which waves, tide and current interact. Even though wind is the predominant force driving the surge, waves and tidal phase are also important factors that influence the mass and momentum transport during the surge. Devastating storm surges often occur in the Bohai Sea, a semi-enclosed shallow sea in North China, due to extreme storms. However, the effects of waves on storm surges in the Bohai Sea have not been quantified and the mechanisms responsible for the higher surges that affect part of the Bohai Sea have not been thoroughly studied. In this study, we set up a storm surge model, considering coupled effects of tides and waves on the surges. Validation against measured data shows that the coupled model is capable of simulating storm surges in the Bohai Sea. The simulation results indicate that the longshore currents, which are induced by the large gradient of radiation stress due to wave deformation, are one of the main contributors to the higher surges occurring in some coastal regions. The gently varying bathymetry is another factor contributing to these surges. With such bathymetry, the wave force direction is nearly uniform, and pushes a large amount of water in that direction. Under these conditions, the water accumulates in some parts of the coast, leading to higher surges in nearby coastal regions such as the south coast of the Bohai Bay and the west and south coasts of the Laizhou Bay. Results analysis also shows that the tidal phase at which the surge occurs influences the wave–current interactions, and these interactions are more evident in shallow waters. Neglecting these interactions can lead to inaccurate predictions of the storm surges due to overestimation or underestimation of wave-induced set-up.


Author(s):  
Dongxiao Yin ◽  
David F. Muñoz ◽  
Roham Bakhtyar ◽  
Z. George Xue ◽  
Hamed Moftakhari ◽  
...  

2013 ◽  
Vol 81 ◽  
pp. 51-66 ◽  
Author(s):  
A. Arns ◽  
T. Wahl ◽  
I.D. Haigh ◽  
J. Jensen ◽  
C. Pattiaratchi

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yumei Ding ◽  
Lei Ding

A hindcast of typical extratropical storm surge occurring in the Bohai Sea in October 2003 is performed using a three-dimensional (3D) Finite Volume Coastal Ocean Model (FVCOM). The storm surge model is forced by 10 m winds obtained from the Weather Research Forecasting (WRF) model simulation. It is shown that the simulated storm surge and tides agree well with the observations. The nonlinear interaction between the surge and astronomical tides, the spatial distribution of the maximum surge level, and the hydrodynamic response to the storm surge are studied. The storm surge is the interaction of the surge and the astronomical tides. The currents change rapidly during the storm surge and turn to be the unidirectional at some places where the tidal currents are usually rectilinear. The results show that the local surge current velocity in each depth, with a magnitude of the same order as the astronomic tidal currents, increases or decreases rapidly depending on the relationship between the winds and current directions. Furthermore, the current pattern gets more complicated under the influence of the direction of the winds, which might affect sand movement in the coastal water of the Bohai Sea.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Jianlong Feng ◽  
Delei Li ◽  
Yan Li ◽  
Qiulin Liu ◽  
Aimei Wang
Keyword(s):  

2011 ◽  
Vol 94-96 ◽  
pp. 810-814
Author(s):  
Jin Shan Zhang ◽  
Wei Sheng Zhang ◽  
Chen Cheng ◽  
Lin Yun Sun

Bohai Bay is an semi-closed bay, the storm surge disaster is very serious in past. Now more and more large ocean engineering are built here, To study changes of storm surge induced by the construction of large-scale coastal engineering in Bohai Bay in present, 2D numerical storm surge model is established with large - medium - small model nested approach. The three most typical storms surges: 9216, 9711 and by cold wave in October 2003 are simulated in the condition of before and after implementation of planning projects in Bohai Bay. Changes of storm surge water level due to implementation of artificial projects are analysis in this paper.


2019 ◽  
Vol 37 (6) ◽  
pp. 1868-1878 ◽  
Author(s):  
Yanping Wang ◽  
Yongling Liu ◽  
Xinyan Mao ◽  
Yutao Chi ◽  
Wensheng Jiang

Sign in / Sign up

Export Citation Format

Share Document