scholarly journals Flame Retardant and Water Repellent Finishing on Cotton Fabrics through a Continuous Layer by Layer Self-Assembly Technology

2016 ◽  
Vol 06 (02) ◽  
pp. 17-24 ◽  
Author(s):  
烁 王
Cellulose ◽  
2020 ◽  
Vol 27 (9) ◽  
pp. 5377-5389 ◽  
Author(s):  
Wenjia Wang ◽  
Jia Guo ◽  
Xiaodong Liu ◽  
Hongfei Li ◽  
Jun Sun ◽  
...  

2019 ◽  
Vol 20 (3) ◽  
pp. 538-544 ◽  
Author(s):  
Shanshan Li ◽  
Fang Ding ◽  
Xinghuan Lin ◽  
Zhiguang Li ◽  
Xuehong Ren

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1884
Author(s):  
Mengfei Jin ◽  
Shangyong Li ◽  
Yanhong Wu ◽  
Dandan Li ◽  
Yantao Han

(1) Background: In the treatment of ulcerative colitis (UC), accurate delivery and release of anti-inflammatory drugs to the site of inflammation can reduce systemic side effects. (2) Methods: We took advantage of this goal to prepare resveratrol-loaded PLGA nanoparticles (RES-PCAC-NPs) by emulsification solvent volatilization. After layer-by-layer self-assembly technology, we deposited chitosan and alginate to form a three-layer polyelectrolyte film. (3) Results: It can transport nanoparticles through the gastric environment to target inflammation sites and slowly release drugs at a specific pH. The resulting RES-PCAC-NPs have an ideal average diameter (~255 nm), a narrow particle size distribution and a positively charged surface charge (~13.5 mV). The Fourier transform infrared spectroscopy showed that resveratrol was successfully encapsulated into PCAC nanoparticles, and the encapsulation efficiency reached 87.26%. In addition, fluorescence imaging showed that RES-PCAC-NPs with positive charges on the surface can effectively target and accumulate in the inflammation site while continuing to penetrate downward to promote mucosal healing. Importantly, oral RES-PCAC-NPs treatment in DSS-induced mice was superior to other results in significantly improved inflammatory markers of UC. (4) Conclusions: Our results strongly prove that RES-PCAC-NPs can target the inflamed colon for maximum efficacy, and this oral pharmaceutical formulation can represent a promising formulation in the treatment of UC.


2018 ◽  
Vol 136 (13) ◽  
pp. 47280 ◽  
Author(s):  
Dongdong Wei ◽  
Chaohong Dong ◽  
Zhaohua Chen ◽  
Jian Liu ◽  
Qun Li ◽  
...  

2018 ◽  
Vol 6 (10) ◽  
pp. 1452-1457 ◽  
Author(s):  
Jianchuan Wen ◽  
Chih-Ko Yeh ◽  
Yuyu Sun

Candida-associated denture stomatitis (CADS) is a common, recurring clinical complication in denture wearers that can lead to serious oral and systemic health problems. Polyelectrolyte layer-by-layer (LBL) self-assembly technology on denture materials offers a new design principle for controlling fungal biofilm formation.


2021 ◽  
Author(s):  
Xinhua Liu ◽  
Hailong Liu ◽  
Yinchun Fang

Abstract In this study, intumescent flame retardant coating of polyethylenimine/phytic acid (PEI/PA) with gradient structure was constructed on cotton fabric through facile layer-by-layer (LBL) assembly method. The LOI value of coated cotton fabric reached over 40% indicating excellent flame retardancy. Reasonable controlling the LBL assembly process of PEI/PA coating brought less influence to the physical properties of cotton fabrics. And the coated cotton fabric revealed good flame retardant washing durability. Thermogravimetric analysis results of coated cotton fabrics showed that PEI/PA flame retardant coating changed the thermal decomposition process and promoted char formation revealing the obviously condensed phase flame retardant action. SEM images of char residues revealed that PEI/PA flame retardant coating promoted to form the intumescent flame retardant (IFR) char layer showing obvious IFR action. This research provides novel strategy for the development of high-efficiency flame retardant cotton fabric with good durability and physical properties using simple LBL assembly method.


2011 ◽  
Vol 492 ◽  
pp. 160-163
Author(s):  
Cai Xia Li ◽  
Qing Lv ◽  
Jie Song ◽  
Dan Yu Jiang ◽  
Qiang Li

Nano-sheets are two-dimensional sheet materials exfoliated from the inorganic layered compounds by various physical and chemical methods. Their unique characteristics insertion reaction and excellent physical and chemical properties have attracted more and more researchers' widespread interests. Selecting quartz glass as the substrate, using layer by layer self-assembly technology, different nano-films materials are prepared. UV/Vis spectroscopy confirmed nano-films materials have been successfully assembled using LBL self-assembly technique. Raman spectrum are mainly used to analyze and characterize the structure of nano-films materials.


2010 ◽  
Vol 434-435 ◽  
pp. 579-581
Author(s):  
Zhi Xian Zhang ◽  
Fan Xiao ◽  
Fei Gao

The TiO2 nanopowder was prepared with TiOSO4 as raw material at low temperature by hydrolysis method, and microspheres coated polyethylene and TiO2 were then fabricated on titanium by layer-by-layer self-assembly technology. Using ultraviolet irradiation of titanium coating in distilled water for some time, titanium with enhanced bioactivity was achieved when immersed in simulated body fluid (SBF). The morphology, size and crystal shape before and after ultraviolet irradiation were characterized by scanning electron microcopy (SEM) and X-ray diffraction (XRD). UV irradiation of titanium results in the conversion of Ti4+ to Ti3+ and the generation of oxygen vacancies, which could react with the absorbed water to form basic Ti–OH groups. Compared with the coating non-UV irradiation, the UV-irradiated coatings do not present any obvious differences in morphology, surface roughness, grain size and phase component; however, they have more abundant basic Ti–OH groups thus the water contact angle decreases greatly so the surface become much more hydrophilic.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 213 ◽  
Author(s):  
Peng Chen ◽  
Yunliang Zhao ◽  
Wei Wang ◽  
Tingting Zhang ◽  
Shaoxian Song

Polymer–clay membranes constructed via the layer-by-layer (LbL) assembly, with a nanobrick wall structure, are known to exhibit high flame retardancy. In this work, chitosan–montmorillonite nanosheet (CH–MMTNS) membranes with different thickness of MMTNS were constructed to suppress the flammability of flexible polyurethane (FPU) foam. It was found that a thinner MMTNS membrane was more efficient in terms of reducing the flammability of the FPU foam. This was because such MMTNS membrane could deposit cheek by jowl and form a dense CH–MMTNS membrane on the foam surface, thus greatly limiting the translation of heat, oxygen, and volatile gases. In contrast, a thicker MMTNS constructed a fragmentary CH–MMTNS membrane on the coated foam surface, due to its greater gravity and weaker electrostatic attraction of chitosan; thus, the flame retardancy of a thick MMTNS membrane was lower. Moreover, the finding of different deposition behaviors of MMTNS membranes with different thickness may suggest improvements for the application of clay with the LbL assembly technology.


2020 ◽  
Vol 243 ◽  
pp. 118641 ◽  
Author(s):  
Xiaohui Liu ◽  
Qiuyan Zhang ◽  
Bo Peng ◽  
Yuanlin Ren ◽  
Bowen Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document