scholarly journals Construction of Safety Integrity Management System of Coal Mine and Development of Application System

2017 ◽  
Vol 06 (06) ◽  
pp. 155-162
Author(s):  
金城 曲
ICPTT 2011 ◽  
2011 ◽  
Author(s):  
Ting Wang ◽  
Qing-shan Feng ◽  
Hong-long Zheng ◽  
Ling Sun ◽  
Qing Chang

Author(s):  
Karine Kutrowski ◽  
Rob Bos ◽  
Jean-Re´gis Piccardino ◽  
Marie Pajot

On January 4th 2007 TIGF published the following invitation for tenders: “Development and Provision of a Pipeline Integrity Management System”. The project was awarded to Bureau Veritas (BV), who proposed to meet the requirements of TIGF with the Threats and Mitigations module of the PiMSlider® suite extended with some customized components. The key features of the PiMSlider® suite are: • More than only IT: a real integrity philosophy, • A simple intuitive tool to store, display and update pipeline data, • Intelligent search utilities to locate specific information about the pipeline and its surrounding, • A scalable application, with a potentially unlimited number of users, • Supervision (during and after implementation) by experienced people from the oil and gas industry. This paper first introduces TIGF and the consortium BV – ATP. It explains in a few words the PIMS philosophy captured in the PiMSlider® suite and focuses on the added value of the pipeline Threats and Mitigations module. Using this module allows the integrity analyst to: • Prioritize pipeline segments for integrity surveillance purposes, • Determine most effective corrective actions, • Assess the benefits of corrective actions by means of what-if scenarios, • Produce a qualitative threats assessment for further use in the integrity management plan, • Optimize integrity aspects from a design, maintenance and operational point of view, • Investigate the influence of different design criteria for pipeline segments. To conclude, TIGF presents the benefits of the tool for their Integrity Management department and for planning inspection and for better knowledge of their gas transmission grid.


2021 ◽  
Author(s):  
Fianti Ramadhani ◽  
Syaiful Nurdin ◽  
Michael Olu Etuhoko ◽  
Yang Zhi ◽  
Sugeng Mulyono ◽  
...  

Abstract Four high-pressure-high temperature (HPHT) and sour gas wells are currently operating at Madura offshore as the only productive assets for Husky-CNOOC Madura Limited (HCML). Each well performance is very crucial to fulfill the demand of the gas customers in East Java, Indonesia. Since starting production in 2017, the wells experienced two main well integrity challenges, high annulus pressure and wellhead growth. Both challenges are very dependent to the well flow rate and the flow duration. A continuous operation monitoring is highly required in order to keep the wells operating safely. To overcome the challenges, HCML established a Well Integrity Management System (WIMS) document that approached several international standards as its basis. As company grows, development plan challenged the WIMS to perform faster and more efficient as compared to the existing manual system. From there, the journey of WIMS digitalization began. The journey started with the alignment of the existing WIMS document to the ISO-16530-1 at Operational Phase with more stringent boundary to operate the wells safely. The alignment covers, but not limited to the organizational structure, well barriers and criteria, monitoring and surveillance, annulus pressure management, and maintenance. The document also covered risk assessment and management of well integrity failure, which was the backbone of the WIMS digitalization. The current digital solutions allow production data to be accessed and retrieved directly from the system for analysis purposes. It compares the recorded data with pre-determined rules and parameters set in the system. It triggers a notification to the responsible personnel to perform the required action should any anomaly occurs. It also can send a reminder to users to schedule and complete a well Integrity test to ensure that a well is always in compliance with the WIMS. All test reports and documentation are stored in the system as preparation for any future audit. A key requirement of the expert software system was access to future developments that can offer enhanced functionality of the well integrity platform through additional near time capabilities such as predictive erosion and corrosion for downhole flow wetted components. This is being developed to enhance workover scheduling for existing wells and material selection for new wells and is planned to update automatically critical well integrity criteria such as tubing burst, collapse and MAASP.


Author(s):  
Alex J. Baumgard ◽  
Tara L. Coultish ◽  
Gerry W. Ferris

Over the last 15 years, BGC Engineering Inc. has developed and implemented a geohazards Integrity Management Program (IMP) with 12 major pipeline operators (consisting of gas and oil pipelines and of both gathering and transmission systems). Over this time, the program has been applied to the assessment of approximately 13,500 individual hydrotechnical and geotechnical geohazard sites spanning approximately 63,000 km of operating pipelines in Canada and the USA. Hydrotechnical (watercourse) and geotechnical (slope) hazards are the primary types of geohazards that have directly contributed to pipeline failures in Canada. As with all IMPs, the core objectives of a geohazard management system are to ensure a proactive approach that is repeatable and defensible. In order to meet these objectives, the program allows for varying levels of intensity of inspection and a recommended timescale for completion of actions to manage the identified geohazards in accordance with the degree of hazard that the site poses to the pipeline. In this way, the sites are managed in a proactive manner while remaining flexible to accommodate the most current conditions at each site. This paper will provide a background to the key components of the program related specifically to existing operating pipeline systems, present pertinent statistics on the occurrence of various types of geohazards based on the large dataset of inspections, and discuss some of the lessons learned in the form of program results and program challenges from implementing a geohazard integrity management system for a dozen operators with different ages of systems, complexity of pipeline networks, and in varied geographic settings.


2011 ◽  
Vol 271-273 ◽  
pp. 1168-1172
Author(s):  
Wei Zhang ◽  
Lin Na Zhao

Because of the multi-user and multi-function characteristics of the Teaching Management System of universities, the application system is usually designed to be distributed architecture. This paper analyzes its complex functional demands through building a use case model, finds out the key factors from the aspect of the use case model, and finally meets the distributed needs with the application of lightweight container architecture. The analysis and design of the distributed teaching management system can reduce the risk of failure, and the functional demands of the application system can be realized gradually with the coherence of the architecture.


Author(s):  
Menno T. van Os ◽  
Piet van Mastrigt ◽  
Andrew Francis

A significant part of the high pressure gas transport system of Gasunie cannot be examined by in-line inspection techniques. To ensure safe operation of these pipelines, an External Corrosion Direct Assessment (ECDA) module for PIMSLIDER (a pipeline integrity management system) is currently under development. The functional specifications of this module are based on NACE RP0502-2002, a recommended practice for ECDA. In addition to this, a new probabilistic methodology has been adopted, to take account for uncertainties associated with ECDA and to quantify the contributions from aboveground surveys and excavations to the integrity of a pipeline. This methodology, which is based on Structural Reliability Analysis (SRA) and Bayesian updating techniques, is presented in more detail in paper IPC2006-10092 of this conference. The DA module of PIMSLIDER enables computerized storage, retrieval and processing of all appropriate pipeline data and therefore guarantees highly accurate, reproducible and time saving integrity analyses of the Gasunie grid. Another important function of this system is the ability to use the complete database of all pipelines to pre-assess the integrity of a particular pipeline. This automated retrieval of data from pipelines with similar characteristics and/or environmental conditions results in a substantial increase of accessible data and enables Gasunie to improve the reliability of applied statistics throughout the process. As a consequence, the overall cost of inspections and excavations can be greatly reduced. In the Pre-Assessment phase, the DA module assists the integrity manager in gathering and analyzing data necessary to determine the current condition of a pipeline. After collection and visualization of the available data, the user can identify suitable ECDA regions. Furthermore, the gathered data are used to construct prior distributions of parameters relevant to the SRA model, such as the number and size of corrosion defects and pipeline-related parameters. In the Indirect Inspections step, the DA module allows the user to store and analyze the data from aboveground surveys, in order to identify and define the severity of coating faults and areas at which corrosion activity may occur. The probabilistic methodology accounts for the individual performance of each applied survey technique in terms of missed defects and false indications, in general a major source of uncertainty in ECDA. In the Direct Examinations phase, excavations are carried out to collect data to assess possible corrosion activity. Subsequently, the ECDA module uses this information to update, among other things, the parameters concerning the performance of survey techniques, the number of defects and the corrosion rate. As a result, updated failure frequencies are calculated for each ECDA-region (after each excavation if required), which are then used by the DA module to advise the integrity manager if additional mitigating activities are necessary, or by defining a reassessment interval.


Sign in / Sign up

Export Citation Format

Share Document