scholarly journals NATURAL RADIOACTIVITY OF GRANITES USED AS BUILDING MATERIALS IN GREECE

2004 ◽  
Vol 36 (1) ◽  
pp. 113 ◽  
Author(s):  
S. Pavlidou ◽  
A. Koroneos ◽  
C. Papastefanou ◽  
G. Christofides ◽  
S. Stoulos ◽  
...  

The granites used in Greece as building materials and imported from foreign countries, mainly from Spain and Brazil, are rock types similar with the stony building materials world-wide used. Sixteen kinds of different granites, considered as the most popular, were sampled and their natural radioactivity was measured by gamma spectrometry. The, 226Ra, 232Th and 40K contents of granites were compared to corresponding ones of other building materials as well as other granite types used all over the world. For the reasons of radiological impact from use of granites as building materials, the absorbed dose and the effective dose as well were determined. Although the annual effective dose is higher than the limit of 1 mSv a"1 for some granites examined, they could be used safely as building materials, considering that their contribution in most of the house constructions is very low. An attempt to correlate the relatively high level of natural radioactivity of different kinds of granites with the presence of radioactive minerals and their chemical composition was also made.

2012 ◽  
Vol 27 (4) ◽  
pp. 392-398 ◽  
Author(s):  
Saeed Rahman ◽  
Muhammad Rafique

Radioactivity levels in building materials, collected from the Islamabad capital territory have been determined by using a gamma spectrometric technique. Measured specific activities of 226Ra, 232Th, and 40K in material samples ranged from 8 ? 1 to 116 ? 6 Bq/kg, 9 ? 1 to 152 ? ? 5 Bq/kg, and 29 ? 6 to 974 ? 23 Bq/kg, respectively. The radium equivalent activity, absorbed dose rate, annual effective dose, and gamma index were evaluated from the measured amounts of radioactivity to assess the radiation hazard associated with the studied building materials. The mean radium equivalent activity, the absorbed dose rate and annual effective dose estimated ranged from 81 ? 6 to 221 ? 11 Bq/kg, 38 ? 3 to 104 ? 5 nGy/h, and 0.23 ? 0.02 to 0.64 ? 0.03 mSv, respectively. The ranges of the calculated Raeq were found to be lower than the values recommended for construction materials (370 Bq/kg). The mean values of the internal and external hazard indices were found in the range of 0.30 ? 0.02 to 0.78 ? 0.05 and 0.22 ? 0.02 to 0.60 ? 0.03, respectively. The results of the materials examined indicate no significant radiological hazards arise from using such material in building construction.


2014 ◽  
Vol 6 (2) ◽  
Author(s):  
Argyrios Papadopoulos ◽  
Georgios Christofides ◽  
Antonios Koroneos ◽  
Stylianos Stoulos

AbstractThis study aims to evaluate the activity concentrations of 238U, 226Ra, 232Th, 228Th and 40K along the beaches of Sithonia Peninsula which are adjacent to the rock-types of the Sithonia Plutonic Complex. These range from 6–673, 5–767, 5–1750, 6–1760 and 185–875 Bq/kg respectively. The (% wt.) heavy magnetic (HM) fraction (epidote, allanite, hornblende, biotite and garnet), the heavy non-magnetic (HNM) fraction (monazite, zircon, titanite and apatite) and the total heavy (TH) fraction, were correlated with the concentrations of the measured radionuclides in the bulk samples. The HNM fraction seems to control the activity concentrations of 238U in all samples, while the HM fraction, at least for the heavy mineral rich samples bearing high amounts of epidote crystals with allanite cores, controls their 232Th content. The measured radionuclides in beach sands were normalized to the respective values measured in the granitic rocks, which are their most probable parent rocks, in order to provide data on their enrichment or depletion. The annual effective dose varies from 0.013 to 0.688 mSv y−1 for local people working on the beach, while for tourists the annual external effective dose ranges between 0.003 and 0.165 mSv y−1.


2018 ◽  
Vol 53 (4) ◽  
pp. 265-278 ◽  
Author(s):  
S. Penabei ◽  
D. Bongue ◽  
P. Maleka ◽  
T. Dlamini ◽  
Saïdou ◽  
...  

In order to assess the levels of natural radioactivity and the associated radiological hazards in some building materials of the Mayo-Kebbi region (Chad), a total of nineteen samples were collected on the field. Using a high resolution γ-ray spectrometry system, the activity concentrations of radium (226Ra), thorium (232Th) and potassium (40K) in these samples have been determined. The measured average activity concentrations range from 0.56 ± 0.37 Bq kg−1 to 435 ± 7 Bq kg−1, 1.3 ± 0.6 Bq kg−1 to 50.6 ± 1.1 Bq kg−1 and 4.3 ± 2.0 Bq kg−1 to 840 ± 9 Bq kg−1, for 226Ra, 232Th and 40K, respectively. The highest 226Ra average activities is found in soil brick samples of Zabili. The highest mean value of 232Th and 40K concentrations are found in soil brick samples of Madajang. The activity concentration and the radium equivalent activity (Raeq) have been compared to other studies done elsewhere in the world. Their average values are lower than most of those of countries with which the comparison has been made. Were also evaluated, the external radiation hazard index, the internal radiation hazard index, the indoor air absorbed dose rate, the outdoor air absorbed dose rate, the activity utilization index, the annual effective dose, the annual gonadal dose equivalent, the representative level index, as well as, the excess lifetime cancer risk. In accordance with the criterion of the Organization for Economic Cooperation and Development, our results show that soil brick samples of Zabili and Madajang increases the risk of radiation exposure, thereby the possibility of developing cancer by people living in this environment. Based on these findings, brick samples from Zabili and Madajang are not recommended for construction purposes. All other sample materials have properties that are acceptable for use as building materials in terms of radiation hazard.


2020 ◽  
Vol 15 (1) ◽  
pp. 107-118
Author(s):  
Daniel Hatungimana ◽  
Caner Taşköprü ◽  
Mutlu İçhedef ◽  
Müslim Murat Saç ◽  
Şemsi Yazıcı ◽  
...  

ABSTRACT The aim of this study is to determine the radon and natural radioactivity concentrations of some building materials and to assess the radiation hazard associated with those mortar materials when they are used in the construction of dwellings. Radon measurements were realized by using LR-115 Type 2 solid state nuclear track detectors. Radon activity concentrations of these materials were found to vary between 130.00 ± 11.40 and 1604.06 ± 40.5 Bq m−3. The natural radioactivity in selected mortar materials was analyzed by using scintillation gamma spectroscopy. The activity concentrations for 226Ra, 232Th and 40K for the studied mortar materials ranged from ND to 48.5 ± 7.0 Bq kg−1, ND to 41.0 ± 6.4 Bq kg−1 and ND to 720.4 ± 26.8 Bq kg−1, respectively. Radium equivalent activities, external and internal hazard indexes, gamma and alpha indexes and absorbed gamma dose rates were calculated to assess the radiation hazard of the natural radioactivity in studied samples. The calculated Raeq values of all samples were found to be lower than the limit of 370 Bq kg−1 set for building materials. The estimated hazard index values were found to be under the unity and the absorbed dose rate values were also below the worldwide average of 84 nGy h−1.


2019 ◽  
Vol 24 (4) ◽  
pp. 62
Author(s):  
Sabah Mahmoud Aman Allah ◽  
Abdullah Zahim Nouri

The present  research aims to assess the radionuclides concentration in the soil samples by using the spectroscopy technique of high-purity germanium detector. Four samples of soil were collected at depth of 15 cm for selected regions of Kirkuk and Salahuddin governorates with two samples for the two governorates. The study shows that the activity unit for the 226Ra, 214Pb, 212Pb, 228Ac, and 40K in the studied samples ranged between (11.4±0.7-5.6±1.2) in a rate (9.4±0.85) and in a (3.8± 0.4-29±4) and rate (19.3 ± 5.4) (2± 0.1 – 9.4±0.7) in a rate (6.4±0.54) and (1.6±0.2-11.4±1.2) in a rate (7.95 ± 0.775) and (64.2 ± 4.2-226.2 ± 8) in a rate (172.25 ± 7.7) Bq.kg-1, respectively, as well as, calculated EQ Radium (60.7194-12.8314) Bq.kg-1, activity concentration indicator (  (0.4448-0.096133), internal Risk indicator (0.236988-0.049795), external risk indicator(0.164015-0.03466), values of absorbed dose in air (28.79214-6.23074) nGy.kg-1, the annual effective dose internal factor (0.141243-0.030566) mSv.y-1, the annual effective dose external factor(0.035311-0.007641) mSv.y-1. All these values do not exceed the internationally permissible standards recognized by the World Health Organization (WHO) and have no adverse impact, on the human health or the environment.   http://dx.doi.org/10.25130/tjps.24.2019.074


2017 ◽  
Vol 27 (3) ◽  
pp. 193
Author(s):  
Sonexay Xayheungsy ◽  
Le Hong Khiem ◽  
Le Dai Nam

The natural radioactivity due to presence of 226Ra, 232Th and 40K radionuclides in Lao PDR cements was measured for first time using a gamma-spectrometry with HPGe detector. Two different types of cement produced by 4 local cement companies in Lao PDR have been investigated.  The specific radioactivity of 226Ra, 232Th and 40K in the investigated samples ranged from 24.83 ± 1.18  to 54.39 ± 5.90  Bq kg-1 with a mean of 37.76 ± 10.71 Bq kg-1, 6.63 ± 1.59 to 21.17 ± 0.48 Bq kg-1 with a mean of 13.77 ± 5.85 Bq kg-1 and 43.28 ± 7.68 to 168.70 ± 3.34 Bq kg-1 with a mean of 116.07 ± 47.50 Bq kg-1, respectively. The radium equivalent activity (Raeq), the gamma-index, the external and internal hazard indices, Absorb Dose Rate in Air (D) and Annual Effective Dose Equivalent (AEDE) were estimated for the radiation hazard of the natural radioactivity in all cement samples. The obtained results were compared with the corresponding values for cement of different countries. The calculated Raeq values of Lao PDR samples are lower than the limit of 370 Bq kg-1 set fo building materials. The mean indoor absorbed dose rate is slightly lower than the population-weighted average of 84 nGy h-1 while the corresponding effective dose was 79% less than the dose ft of 1 mSv y-1. The results obtained in this study show no significant radiological hazards arising from using Lao PDR cement for construction of houses.


Author(s):  
M. U. Audu ◽  
G. O. Avwiri ◽  
C. P. Ononugbo

Study of the terrestrial Background Ionizing Radiation levels of selected Oil Spill Communities of Delta State, Nigeria have been carried out using Digilert 200 and Radalert 100 nuclear radiation monitor and a geographical positioning system (Garmin GPSMAP 76S). The exposure rates of the five communities ranges from 0.016 to 0.030  at Jones Creek, 0.014 to 0.034  at Opuwade Community, 0.015 to 0.037   at Okpare community, 0.007 to 0.029  at OtuJeremi community and 0.011to 0.040  at Otor-Edo community. The obtained mean exposures rates were higher than ICRP standard limit of 0.013. The absorbed dose rates calculated ranged from 139.2 to 261 (Jones Creek), 121.8 to 259.8 nGyh-1 (Opuwade Community), 130.5 to 321.9 nGyh-1 (Okpare community), 60.9 to 252.3 nGyh-1 (OtuJeremi community) and 95.9 to 348 nGyh-1 (Otor-Edo community). The estimated annual effective dose equivalent varies from  0.21 to 0.40 , 0.19 to  0.45 , 0.20 to  0.49 , 0.09 to 0.39  and  0.15 to 0.53  for Jones Creek, Opuwade Community, Okpare community, Otu Jeremi community and Otor-Edo community respectively while the excess lifetime cancer risk calculated for Jones Creek varies from (0.75  to 1.40)  x 10-3, Opuwade community (0.65 to 1.59 )×, Okpare community (0.70 to 1.73 ) x , OtuJeremi community (0.33 to 1.35)× and Otor-Edo community (0.51 to 1.87)×. All the mean values of absorbed dose, annual effective dose and excess lifetime cancer risk exceeded their recommended safe values. The results obtained in this work may not constitute any immediate health risk to the residents of the selected oil spill communities but long term exposure in the area may lead to detrimental health risks.


2021 ◽  
Vol 8 (S1-Feb) ◽  
pp. 97-103
Author(s):  
Niranjan R S ◽  
Ningappa C ◽  
Nandakumar V ◽  
Harshavardhana C N

All individual living beings on the earth are exposed continuously to the radiations coming from terrestrial and extraterrestrial sources and also from their own bodies. The indoor and outdoor ambient gamma radiations are measured in and around Nuggihalli- Holenarasipura schist belts of Hassan district in Karnataka state. The measurements are carried out using the environment radiation dosimeter UR 705 which is a portable detector. Absorbed dose rate and annual effective dose rate are estimated by measuring the exposure rate. The total annual effective dose calculated from both indoor and outdoor varies from 0.68 to1.62 mSv.y-1 with an average value of 1.16 mSv.y-1. The calculated indoor and outdoor annual effective doses are found to be higher than the world average.


Sign in / Sign up

Export Citation Format

Share Document