scholarly journals The interpretation of seismic facies in the molassic deposition of Preadriatic Foredeep

2001 ◽  
Vol 34 (4) ◽  
pp. 1493
Author(s):  
A. GJIKA ◽  
S. GURI ◽  
M. GURl ◽  
M. GJIKA ◽  
E. TRIFONI

The purpose of this article is to illustrate the principles of seismic facie analysis used in the interpretation of sedimentary rocks, in siliciclastic deposits, especially in molassic one. The recognition and definition of a seismic facies and the analysis of its vertical evolution (facies associations) lead to an environmental interpretation, which can give useful information on both sedimentary facies and reservoir characteristics. With this aim, the major depositional systems, from continental to deep marine, and the depositional elements in which they can be subdivided, will be briefly overviewed in terms of extension, geometry, continuity and lateral variations. For each of these systems, it is pointed out, the major physical active processes during the deposition, the resulting sedimentary structures and their vertical and lateral evolution. The comparison between the environmental interpretation derived from bottom cores, well - logs and that derived from the current depositional models, is used to predict the nature and distribution of reservoir and sealing rocks.

2013 ◽  
Vol 63 (2) ◽  
pp. 175-199 ◽  
Author(s):  
Artur Kędzior ◽  
Mihai E. Popa

Abstract Kędzior, A. and Popa, E.M. 2013. Sedimentology of the Early Jurassic terrestrial Steierdorf Formation in Anina, Colonia Cehă Quarry, South Carpathians, Romania. Acta Geologica Polonica, 63 (2), 175-199. Warszawa. The continental, coal bearing Steierdorf Formation, Hettangian - Sinemurian in age, is included in the Mesozoic cover of the Reşiţa Basin, Getic Nappe, South Carpathians, Romania. The Steierdorf Formation can be studied in Anina, a coal mining center and an exceptional locality for Early Jurassic flora and fauna, occurring in the middle of the Reşiţa Basin. This paper presents the results of sedimentological, stratigraphical and paleobotanical researches undertaken in Colonia Cehă open cast mine in Anina, where the Steierdorf Formation outcrops widely. Several sedimentary facies associations have been described, these associations permitting the reconstruction of various depositional systems such as alluvial fans, braided and meandering river systems, as well as lacustrine and coal generating marsh systems of the Steierdorf Formation. The sedimentary associations recorded within the Steierdorf Formation show a gradual fining upward trend, pointing to a rising marine water table and a decreasing relief within the source area.


2018 ◽  
Vol 3 (4) ◽  
pp. 290-306 ◽  
Author(s):  
Belén Viera Honegger ◽  
Ethel Morales ◽  
Matias Soto ◽  
Bruno Conti

The Uruguayan continental margin was generated following the fragmentation of the Gondwana supercontinent and the subsequent opening of South Atlantic Ocean. It constitutes an extensive sedimentation area in which three sedimentary basins can be found: the Punta del Este Basin, the southernmost portion of the Pelotas Basin, and the poorly defined Oriental del Plata Basin. The aim of this work was the identification and characterization of the different seismic units (seismic facies, systems tracts, depositional sequences) for the sedimentary interval assigned to the Eocene in the Uruguayan continental margin. Sequence stratigraphy was used as a basin analysis method for this purpose, using a database that consisted of approximately 10,000 kilometers of 2D seismic sections, acquired in exploratory surveys in 2007 and 2008. The workflow included the recognition of stacking patterns and/or stratal terminations, the definition of genetically significant stratigraphic surfaces and, based on these, the identification of systems tracts and depositional sequences. Three depositional sequences were identified in the studied sedimentary interval. The basal sequence is composed of four depositional systems tracts, including falling stage, normal regression (lowstand and highstand) and transgressive deposits. The intermediate sequence only preserves lowstand normal regression deposits. The third sequence is composed by three depositional systems tracts, including lowstand, transgressive and falling stage deposits. ResumoA margem continental uruguaia foi gerada após a fragmentação do supercontinente Gondwana e a subsequente abertura do Oceano Atlântico Sul. Constitui uma extensa área de sedimentação em três bacias sedimentares: a bacia de Punta del Este, a porção mais ao sul da Bacia de Pelotas e a Bacia Oriental del Plata, pouco definida. O objetivo deste trabalho foi a identificação e caracterização das diferentes unidades sísmicas (fácies sísmicas, tratos de sistemas, seqüências deposicionais) para o intervalo sedimentar atribuído ao Eoceno na margem continental uruguaia. Com este objetivo, utilizou-se a estratigrafia de seqüencias como método de análise de bacias, tendo-se utilizado um banco de dados constituído por aproximadamente 10.000 km de seções sísmicas 2D, adquiridas em pesquisas exploratórias em 2007 e 2008. O trabalho incluiu o reconhecimento de padrões de empilhamento e/ou terminações estratais, a definição de superfícies estratigráficas geneticamente significativas, tendo-se efetuado com base nelas, a identificação de tratos de sistemas e seqüências deposicionais. Três seqüências deposicionais foram identificadas no intervalo sedimentar estudado. A seqüência basal é composta por quatro tratos de sistemas deposicionais, incluindo a fase de abaixamento do nível do mar, a regressão normal e depósitos transgressivos. A sequência intermediária apenas preserva os depósitos de regressão normais de nível de mar baixo. A terceira seqüência é composta por três tratos de sistemas deposicionais, incluindo depósitos de nível de mar baixo, transgressivos e de abaixamento do nível do mar.


2021 ◽  
Vol 91 (8) ◽  
pp. 887-911
Author(s):  
Manuel F. Isla ◽  
Ernesto Schwarz ◽  
Gonzalo D. Veiga ◽  
Jerónimo J. Zuazo ◽  
Mariano N. Remirez

ABSTRACT The intra-parasequence scale is still relatively unexplored territory in high-resolution sequence stratigraphy. The analysis of internal genetic units of parasequences has commonly been simplified to the definition of bedsets. Such simplification is insufficient to cover the complexity involved in the building of individual parasequences. Different types of intra-parasequence units have been previously identified and characterized in successive wave-dominated shoreface–shelf parasequences in the Lower Cretaceous Pilmatué Member of the Agrio Formation in central Neuquén Basin. Sedimentary and stratigraphic attributes such as the number of intra-parasequence units, their thickness, the proportions of facies associations in the regressive interval, the lateral extent of bounding surfaces, the degree of deepening recorded across these boundaries, and the type and lateral extent of associated transgressive deposits are quantitatively analyzed in this paper. Based on the analysis of these quantified attributes, three different scales of genetic units in parasequences are identified. 1) Bedset complexes are 10–40 m thick, basin to upper-shoreface successions, bounded by 5 to 16 km-long surfaces with a degree of deepening of one to three facies belts. These stratigraphic units represent the highest hierarchy of intra-parasequence stratigraphic units, and the vertical stacking of two or three of them typically forms an individual parasequence. 2) Bedsets are 2–20 m thick, offshore to upper-shoreface successions, bounded by up to 10 km long surfaces with a degree of deepening of zero to one facies belt. Two or three bedsets stack vertically build a bedset complex. 3) Sub-bedsets are 0.5–5 m thick, offshore transition to upper-shoreface successions, bounded by 0.5 to 2 km long surfaces with a degree of deepening of zero to one facies belt. Two or three sub-bedsets commonly stack to form bedsets. The proposed methodology indicates that the combination of thickness with the proportion of facies associations in the regressive interval of stratigraphic units can be used to discriminate between bedsets and sub-bedsets, whereas for higher ranks (bedsets and bedset complexes) the degree of deepening, lateral extent of bounding surfaces, and the characteristics of associated shell-bed deposits become more effective. Finally, the results for the Pilmatué Member are compared with other ancient and Holocene examples to improve understanding of the high-frequency evolution of wave-dominated shoreface–shelf systems.


2015 ◽  
Vol 45 (2) ◽  
pp. 243-258 ◽  
Author(s):  
Juliana Okubo ◽  
Ricardo Lykawka ◽  
Lucas Veríssimo Warren ◽  
Julia Favoreto ◽  
Dimas Dias-Brito

<p>Carbonate rocks from the Macaé Group (Albian) represent an example of carbonate sedimentation related to the drift phase in Campos Basin. This study presents depositional features, integrating them with diagenetic and stratigraphic aspects of the Macaé Group carbonates including the upper part of the Quissamã Formation and the lower part of the Outeiro Formation. Macroscopic analyses in cores and microscopic ones in thin sections allowed the recognition of eleven sedimentary facies - nine of them corresponding to the Quissamã Formation and two of them representing the Outeiro Formation. These facies were grouped into five facies associations. Oolitic grainstones and oncolitic grainstones are interpreted to be deposited in shallow depth probably in shoals above the fair weather wave base. The interbanks between shoals were formed in less agitated waters and characterized by deposition of peloidal bioclastic packstones and wackestones representative of sedimentation in calm waters. Bioclastic packstones and oolitic packstones/wackestones represent allochthonous deposits related to the beginning of the regional drowning that occur in upper Quissamã Formation. Pithonellids wackestones and bioclastic wackestones with glauconite are related to deep water deposits, characteristics of the Outeiro Formation. Post-depositional features revealed the action of diagenetic processes as, micritization, cimentation, dissolution, compaction, dolomitization and recrystallization occurred during the eo- and mesodiagenesis phases. Vertical facies analysis suggests shallowing upward cycles stacked in a sequence progressively deeper towards the top (from the Quissamã Formation to the Outeiro Formation).</p>


2021 ◽  
Author(s):  
Hamoumi Naima ◽  
choukri chacrone ◽  
Silvia Spezzaferri

The sedimentary deposits of Eocene-Miocene Mrayt Group, North-Western Rif, Morocco has been the subject of controversy by previous authors regarding their depositional environment. Detailed sedimentological study based on petrographic and sedimentary facies analysis, ichnofacies interpretation and paleocurrent measurements, leads to several results and new insights. Petrographic study provided the first evidence of mixed siliciclastic and carbonate sediments and their nomenclature: silty micrites, micritic siltstones, micritic sandstones, sandy micrite, and allochemic sandstones, as well as the nature of the sources and its geological context. Twenty two sedimentary facies that have never been described before are identified, and based on their succession and association a new interpretation of depositional processes and depositional systems are proposed. The paleoenvironments of the Mrayt Group are interpreted as littoral and shallow marine settings: tides- dominated estuary, tides-dominated delta systems and open coast tidal flat, under complex hydrodynamics strongly influenced by river discharge, tidal currents, waves and storms action.Sedimentation occurred in “the Maghrebian basin” under the interplay of: i) tectonics related to the Cenozoic collision of the African and Eurasian continental plates, ii) Cenozoic alternation of warm climate and cooling due to the increasing influence of Antarctica glaciation, iii) sediments supplies induced by rejuvenation of sedimentary sources and iv) sea level fluctuation related to the advance and retreat of ice-sheet on Antarctica.


2009 ◽  
Vol 60 (5) ◽  
pp. 397-417 ◽  
Author(s):  
Crina Miclăuş ◽  
Francesco Loiacono ◽  
Diego Puglisi ◽  
Dorin Baciu

Eocene-Oligocene sedimentation in the external areas of the Moldavide Basin (Marginal Folds Nappe, Eastern Carpathians, Romania): sedimentological, paleontological and petrographic approachesThe Marginal Folds Nappe is one of the most external tectonic units of the Moldavide Nappe System (Eastern Carpathians), formed by Cretaceous to Tertiary flysch and molasse deposits, piled up during the Miocene closure of the East Carpathian Flysch basin, cropping out in several tectonic half-windows, the Bistriţa half-window being one of them. The deposits of this tectonic unit were accumulated in anoxic-oxic-anoxic conditions, in a forebulge depozone (sensuDeCelles & Giles 1996), and consist of a pelitic background sporadically interrupted by coarse-grained events. During the Late Eocene the sedimentation registered a transition from calcareous (Doamna Limestones) to pelitic (Bisericani Beds) grading to Globigerina Marls at the Eocene-Oligocene boundary, and upward during the Oligocene in deposits rich in organic matter (Lower Menilites, Bituminous Marls, Lower and Upper Dysodilic Shales) with coarsegrained interlayers. Seven facies associations were recognized, and interpreted as depositional systems of shallow to deeper water on a ramp-type margin. Two mixed depositional systems of turbidite-like facies association separated by a thick pelitic interval (Bituminous Marls) have been recognized. They were supplied by a "green schists" source area of Central Dobrogea type. The petrography of the sandstone beds shows an excellent compositional uniformity (quartzarenite-like rocks), probably representing a first cycle detritus derived from low rank metamorphic sources, connected with the forebulge relief developed on such a basement. The sedimentation was controlled mainly by different subsidence of blocks created by extensional tectonic affecting the ramp-type margin of the forebulge depozone.


2020 ◽  
Vol 90 (2) ◽  
pp. 250-267 ◽  
Author(s):  
Sergio A. Marenssi ◽  
Carlos O. Limarino ◽  
Laura J. Schencman ◽  
Patricia L. Ciccioli

ABSTRACT Two episodes of lacustrine sedimentation, separated by an erosional surface and fluvial sedimentation, took place in the southern part of the broken foreland Vinchina basin (NW Argentina) between 11 and 5 Ma. The lacustrine deposits, 768 and 740 meters thick, are recorded in the upper part of the Vinchina Formation (“Vinchina lake”) and the lower part of the Toro Formation (“Toro Negro lake”) respectively. According to sedimentological features, four sedimentary facies associations (FAs) are recognized in the lacustrine deposits: 1) thinly laminated mudstones facies association (FA 1), 2) coarsening- and thickening-upward muddy to sandy cycles (FA 2), 3) medium- to coarse-grained sandstones (FA 3), and 4) mudstones, sandstones, and oolitic limestones (FA 4). Altogether, these facies correspond to ephemeral, shallow, lacustrine systems including saline mudflats. The total thickness of each lacustrine interval, the thickness of the individual cycles and their lithology, and the overall aggradational facies arrangement suggest that both lakes developed during underfilled stages of the basin. The coarsening-upward cycles can be regarded as lacustrine parasequences representing cyclic episodes of expansion and contraction of the lake, but unlike marine parasequences these cycles do not correlate to water depth. The development of lacustrine conditions and continuous base-level rise, together with the coeval southward-directed paleoflow indicators, suggest axial drainages and that the basin was externally closed (endorheic) at that time. The large thicknesses of each lacustrine interval also points to high accommodation in the southern part of the Vinchina basin during these times. Lake filling cycles are one order of magnitude thicker than lake depth, so we postulate that subsidence (tectonic) and rise of the spill point (geomorphology) increased accommodation but not water depth. Thus, unlike marine parasequences, the analyzed coarsening-upward cycles do not correlate to water depth, but rather they are controlled by more complex basinal accommodation processes. We hypothesize that the coeval uplift of the Umango and Espinal basement block to the south, coupled with the initial doming of the Sierra de Los Colorados to the east, may have generated the damming of the southward-directed drainage and a zone of maximum accommodation, then controlling the location of the two lakes and the preservation of their thick sedimentary records. Therefore, localized accommodation was enhanced by a combination of tectonic subsidence and topographic growth. The two lacustrine intervals and the intervening fluvial deposits record changing contributions from axial to transverse drainages and different cycles of closed and open conditions in the basin. A low-frequency, closed to open and back to closed (axial to transverse and return to axial drainage) basin evolution, is envisaged by the development of the two lakes (closed stages) and the erosional surface followed by the interval of fluvial sedimentation that separates them (open stage). In addition, several high-frequency lake fluctuations (expansion–contraction) are represented by the coarsening-upward cycles within each lacustrine interval. The thick lacustrine intervals and their intermediate incision surfaces record cyclic filling and re-excavation stages and localized episodes of increased subsidence in the Vinchina basin, which seem to be a common feature of tectonically active broken foreland basins.


2001 ◽  
Vol 41 (1) ◽  
pp. 463 ◽  
Author(s):  
K. Liu ◽  
C.M. Griffiths ◽  
C.P. Dyt

A 3D depositional modelling program, SEDSIM, was used to model the various depositional systems operating in the Kendrew Trough, Dampier Sub-basin during a two million year period of the Oxfordian. The simulation covers an area of 40 km by 100 km, from the Goodwyn Field in the southwest to the Lambert Field in the northeast, covering the Rankin Trend, Kendrew Trough, Madeleine Trend and part of the Lewis Trough. The simulation started from the Jurassic main unconformity (156.7 Ma) forward to 154.7 Ma using a spatial resolution of 1 km and a time step of 5 ka.The 3D model from the simulation quantitatively mimics the interaction of the palaeogeographic setting, sediment supply, sea level fluctuations, tectonic movement and palaeo-oceanographic setting in three dimensions, to simulate the spatial and temporal distribution of sedimentary facies. The model identified five Oxfordian leads within the Kendrew Trough, including two major slope and basin-floor fan systems, a shelfal-shoreface system, a deltaic system, and a submarine channel system.The study has shown that 3D depositional models produced by SEDSIM are not only able to depict the spatial and temporal distribution of depositional systems on a basin scale, but are also capable of making useful contributions to the understanding of play fairway and lead development.


Sign in / Sign up

Export Citation Format

Share Document