Discriminating intra-parasequence stratigraphic units from two-dimensional quantitative parameters

2021 ◽  
Vol 91 (8) ◽  
pp. 887-911
Author(s):  
Manuel F. Isla ◽  
Ernesto Schwarz ◽  
Gonzalo D. Veiga ◽  
Jerónimo J. Zuazo ◽  
Mariano N. Remirez

ABSTRACT The intra-parasequence scale is still relatively unexplored territory in high-resolution sequence stratigraphy. The analysis of internal genetic units of parasequences has commonly been simplified to the definition of bedsets. Such simplification is insufficient to cover the complexity involved in the building of individual parasequences. Different types of intra-parasequence units have been previously identified and characterized in successive wave-dominated shoreface–shelf parasequences in the Lower Cretaceous Pilmatué Member of the Agrio Formation in central Neuquén Basin. Sedimentary and stratigraphic attributes such as the number of intra-parasequence units, their thickness, the proportions of facies associations in the regressive interval, the lateral extent of bounding surfaces, the degree of deepening recorded across these boundaries, and the type and lateral extent of associated transgressive deposits are quantitatively analyzed in this paper. Based on the analysis of these quantified attributes, three different scales of genetic units in parasequences are identified. 1) Bedset complexes are 10–40 m thick, basin to upper-shoreface successions, bounded by 5 to 16 km-long surfaces with a degree of deepening of one to three facies belts. These stratigraphic units represent the highest hierarchy of intra-parasequence stratigraphic units, and the vertical stacking of two or three of them typically forms an individual parasequence. 2) Bedsets are 2–20 m thick, offshore to upper-shoreface successions, bounded by up to 10 km long surfaces with a degree of deepening of zero to one facies belt. Two or three bedsets stack vertically build a bedset complex. 3) Sub-bedsets are 0.5–5 m thick, offshore transition to upper-shoreface successions, bounded by 0.5 to 2 km long surfaces with a degree of deepening of zero to one facies belt. Two or three sub-bedsets commonly stack to form bedsets. The proposed methodology indicates that the combination of thickness with the proportion of facies associations in the regressive interval of stratigraphic units can be used to discriminate between bedsets and sub-bedsets, whereas for higher ranks (bedsets and bedset complexes) the degree of deepening, lateral extent of bounding surfaces, and the characteristics of associated shell-bed deposits become more effective. Finally, the results for the Pilmatué Member are compared with other ancient and Holocene examples to improve understanding of the high-frequency evolution of wave-dominated shoreface–shelf systems.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiang Zhou ◽  
Xiaofei Ye ◽  
Xiaojing Guo ◽  
Dongxu Liu ◽  
Jinfang Xu ◽  
...  

Background: Sodium-glucose co-transporter-2 inhibitors (SGLT2is) are widely used in clinical practice for their demonstrated cardiorenal benefits, but multiple adverse events (AEs) have been reported. We aimed to describe the distribution of SGLT2i-related AEs in different systems and identify important medical event (IME) signals for SGLT2i.Methods: Data from the first quarter (Q1) of 2013–2021 Q2 in FAERS were selected to conduct disproportionality analysis. The definition of AEs and IMEs relied on the system organ classes (SOCs) and preferred terms (PTs) by the Medical Dictionary for Regulatory Activities (MedDRA-version 24.0). Two signal indicators, the reported odds ratio (ROR) and information component (IC), were used to estimate the association between SGLT2is and IMEs.Results: A total of 57,818 records related to SGLT2i, with 22,537 SGLT2i-IME pairs. Most SGLT2i-related IMEs occurred in monotherapy (N = 21,408, 94.99%). Significant signals emerged at the following SOCs: “metabolism and nutrition disorders” (N = 9,103; IC025 = 4.26), “renal and urinary disorders” (3886; 1.20), “infections and infestations” (3457; 0.85). The common strong signals were observed in diabetic ketoacidosis, ketoacidosis, euglycaemic diabetic ketoacidosis and Fournier’s gangrene. Unexpected safety signals such as cellulitis, osteomyelitis, cerebral infarction and nephrolithiasis were detected.Conclusion: Our pharmacovigilance analysis showed that a high frequency was reported for IMEs triggered by SGLT2i monotherapy. Different SGLT2is caused different types and the association strengths of IMEs, while they also shared some specific PTs. Most of the results are generally consistent with previous studies, and more pharmacoepidemiological studies are needed to validate for unexpected AEs. Based on risk-benefit considerations, clinicians should be well informed about important medical events that may be aggravated by SGLT2is.


1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


1986 ◽  
Vol 18 (4-5) ◽  
pp. 15-26 ◽  
Author(s):  
D. A. Segar ◽  
E. Stamman

Most historical marine pollution monitoring has proven useless in a management context. A strategy for development of effective marine pollution monitoring programs is outlined. This strategy is based on the following steps: 1) systematic evaluation of the management information needs, 2) identification of the hypothetical impacts associated with those management concerns, and 3) investigation of the feasibility of monitoring those effects such that the existence, or absence, of a specified level of effects can be established in a statistically-valid manner. There are two fundamentally different types of monitoring program: site-specific and regional. These two types of program differ markedly in scope and approach when designed through application of this strategy. The strategy requires development of null hypotheses which address management concerns and which are amenable to scientific testing. In order for the program to be successful, the null hypotheses selected for inclusion in a marine pollution monitoring program must address levels of effect which are predefined to be environmentally significant. The definition of environmentally significant effect levels is a difficult process which must be primarily the responsibility of the managerial community.


Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


Author(s):  
Cristina Portalés ◽  
Manolo Pérez ◽  
Pablo Casanova-Salas ◽  
Jesús Gimeno

Abstract3D modelling of man-made objects is widely used in the cultural heritage sector, among others. It is relevant for its documentation, dissemination and preservation. Related to historical fabrics, weaves and weaving techniques are still mostly represented in forms of 2D graphics and textual descriptions. However, complex geometries are difficult to represent in such forms, hindering the way this legacy is transmitted to new generations. In this paper, we present the design and implementation of SILKNOW’s Virtual Loom, an interactive tool aimed to document, preserve and represent in interactive 3D forms historical weaves and weaving techniques of silk fabrics, dating from the 15th to the 19th centuries. To that end, our tool only requires an image of a historical fabric. Departing from this image, the tool automatically subtracts the design, and allows the user to apply different weaves and weaving techniques. In its current version, the tool embeds five traditional weaving techniques, 39 weaves and six types of yarns, which have been defined thanks to close collaboration of experts in computer graphics, art history and historical fabrics. Additionally, users can change the color of yarns and produce different 3D representations for a given fabric, which are interactive in real time. In this paper, we bring the details of the design and implementation of this tool, focusing on the input data, the strategy to process images, the 3D modelling of yarns, the definition of weaves and weaving techniques and the graphical user interface. In the results section, we show some examples of image analysis in order to subtract the design of historical fabrics, and then we provide 3D representations for all the considered weaving techniques, combining different types of yarns.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xu Zhang ◽  
Hoang Nguyen ◽  
Jeffrey T. Paci ◽  
Subramanian K. R. S. Sankaranarayanan ◽  
Jose L. Mendoza-Cortes ◽  
...  

AbstractThis investigation presents a generally applicable framework for parameterizing interatomic potentials to accurately capture large deformation pathways. It incorporates a multi-objective genetic algorithm, training and screening property sets, and correlation and principal component analyses. The framework enables iterative definition of properties in the training and screening sets, guided by correlation relationships between properties, aiming to achieve optimal parametrizations for properties of interest. Specifically, the performance of increasingly complex potentials, Buckingham, Stillinger-Weber, Tersoff, and modified reactive empirical bond-order potentials are compared. Using MoSe2 as a case study, we demonstrate good reproducibility of training/screening properties and superior transferability. For MoSe2, the best performance is achieved using the Tersoff potential, which is ascribed to its apparent higher flexibility embedded in its functional form. These results should facilitate the selection and parametrization of interatomic potentials for exploring mechanical and phononic properties of a large library of two-dimensional and bulk materials.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Clifford V. Johnson ◽  
Felipe Rosso

Abstract Recent work has shown that certain deformations of the scalar potential in Jackiw-Teitelboim gravity can be written as double-scaled matrix models. However, some of the deformations exhibit an apparent breakdown of unitarity in the form of a negative spectral density at disc order. We show here that the source of the problem is the presence of a multi-valued solution of the leading order matrix model string equation. While for a class of deformations we fix the problem by identifying a first order phase transition, for others we show that the theory is both perturbatively and non-perturbatively inconsistent. Aspects of the phase structure of the deformations are mapped out, using methods known to supply a non-perturbative definition of undeformed JT gravity. Some features are in qualitative agreement with a semi-classical analysis of the phase structure of two-dimensional black holes in these deformed theories.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 169
Author(s):  
Federico Lessio ◽  
Alberto Alma

This paper reviews the existing predictive models concerning insects and mites harmful to grapevine. A brief conceptual description is given on the definition of a model and about different types of models: deterministic vs. stochastics, continuous vs. discrete, analytical vs. computer-based, and descriptive vs. data-driven. The main biological aspects of grapevine pests covered by different types of models are phenology, population growth and dynamics, species distribution, and invasion risk. A particular emphasis is put on forecasting epidemics of plant disease agents transmitted by insects with sucking-piercing mouthparts. The most investigated species or groups are the glassy-winged sharpshooter Homalodisca vitripennis (Germar) and other vectors of Xylella fastidiosa subsp. fastidiosa, a bacterium agent of Pierce’s disease; the European grape berry moth, Lobesia botrana (Denis and Schiffermuller); and the leafhopper Scaphoideus titanus Ball, the main vector of phytoplasmas agents of Flavescence dorée. Finally, the present and future of decision-support systems (DSS) in viticulture is discussed.


1954 ◽  
Vol 4 (1-2) ◽  
pp. 84-90 ◽  
Author(s):  
G. B. Kerferd

Plato's Sophist begins with an attempt to arrive by division at a definition of a Sophist. In the course of the attempt six different descriptions are discussed and the results summarized at 231 c-e. A seventh and final account may be said to occupy the whole of the rest of the dialogue, including the long digression on negative statements. The first five divisions characterize with a considerable amount of satire different types of sophist, or more probably different aspects of the sophistic art. The sixth division (226 a–231 b) is very different. To quote Cornford's words, ‘satire is dropped. The tone is serious and sympathetic, towards the close it becomes eloquent’.


Sign in / Sign up

Export Citation Format

Share Document