scholarly journals Experimental energy resolution of a paracentric hemispherical deflector analyzer for different entry positions and bias simulated in SIMION

2019 ◽  
Vol 21 ◽  
pp. 100
Author(s):  
G. G. Gennarakis ◽  
T. J. M. Zouros

Results from the simulation of a biased paracentric hemispherical deflector analyzer (HDA) with injection lens are presented. The finite differences electron optics software SIMION was used to perform Monte Carlo type trajectory simulations in an effort to investigate the focusing effects of the HDA entry and exit fringing fields which are used to improve energy resolution - a novel feature of this type of analyzer. Comparisons to recent experimental results are also presented. Biased paracentric HDAs represent a novel class of HDAs, which use the lensing action of the strong fringing fields at the HDA entry, to restore the first order focus characteristics of ideal HDAs in a controlled way. The improvement in energy resolution and transmission without the use of any additional fringing field correction electrodes is of particular interest to modern analyzers using position sensitive detectors.

2014 ◽  
Vol 21 (4) ◽  
pp. 762-767 ◽  
Author(s):  
Ari-Pekka Honkanen ◽  
Roberto Verbeni ◽  
Laura Simonelli ◽  
Marco Moretti Sala ◽  
Ali Al-Zein ◽  
...  

Wavelength-dispersive high-resolution X-ray spectrometers often employ elastically bent crystals for the wavelength analysis. In a preceding paper [Honkanenet al.(2014).J. Synchrotron Rad.21, 104–110] a theory for quantifying the internal stress of a macroscopically large spherically curved analyser crystal was presented. Here the theory is applied to compensate for the corresponding decrease of the energy resolution. The technique is demonstrated with a Johann-type spectrometer using a spherically bent Si(660) analyser in near-backscattering geometry, where an improvement in the energy resolution from 1.0 eV down to 0.5 eV at 9.7 keV incident photon energy was observed.


Author(s):  
Y. Taniguchi ◽  
E. Nakazawa ◽  
S. Taya

Imaging energy filters can add new information to electron microscopic images with respect to energy-axis, so-called electron spectroscopic imaging (ESI). Recently, many good results have been reported using this imaging technique. ESI also allows high-contrast observation of unstained biological samples, becoming a trend of the field of morphology. We manufactured a new type of energy filter as a trial production. This energy filter consists of two magnets, and we call γ-filter since the trajectory of electrons shows ‘γ’-shape inside the filter. We evaluated the new energyγ-filter TEM with the γ-filter.Figure 1 shows schematic view of the electron optics of the γ-type energy filter. For the determination of the electron-optics of the γ-type energy filter, we used the TRIO (Third Order Ion Optics) program which has been developed for the design of high resolution mass spectrometers. The TRIO takes the extended fringing fields (EFF) into consideration. EFF makes it difficult to design magnetic energy filters with magnetic sector fields.


1979 ◽  
Vol 14 (1) ◽  
pp. 89-109
Author(s):  
B. Coupal ◽  
M. de Broissia

Abstract The movement of oil slicks on open waters has been predicted, using both deterministic and stochastic methods. The first method, named slick rose, consists in locating an area specifying the position of the slick during the first hours after the spill. The second method combines a deterministic approach for the simulation of current parameters to a stochastic method simulating the wind parameters. A Markov chain of the first order followed by a Monte Carlo approach enables the simulation of both phenomena. The third method presented in this paper describes a mass balance on the spilt oil, solved by the method of finite elements. The three methods are complementary to each other and constitute an important point for a contingency plan.


2002 ◽  
Vol 09 (01) ◽  
pp. 583-586
Author(s):  
KOTA IWASAKI ◽  
KOICHIRO MITSUKE

A new angle-resolving electron energy analyzer composed of a conical electrostatic prism and a position-sensitive detector was developed for gas phase photoelectron spectroscopy. The performance of the analyzer has been tested by measuring photoelectron spectra of Ar using a helium discharge lamp. The angular resolution of 3° was achieved at the pass energy E of 5.6 eV. The best energy resolution was ΔE/E = 0.043 at E = 1.4 eV .


1995 ◽  
Vol 377 ◽  
Author(s):  
R. Martins ◽  
G. Lavareda ◽  
F. Soares ◽  
E. Fortunato

ABSTRACTThe aim of this work is to provide the basis for the interpretation of the steady state lateral photoeffect observed in p-i-n a-Si:H ID Thin Film Position Sensitive Detectors (ID TFPSD). The experimental data recorded in ID TFPSD devices with different performances are compared with the predicted curves and the obtained correlation's discussed.


Author(s):  
Austin Rogers ◽  
Fangzhou Guo ◽  
Bryan Rasmussen

Abstract Many fault detection, optimization, and control logic methods rely on sensor feedback that assumes the system is operating at steady state conditions, despite persistent transient disturbances. While filtering and signal processing techniques can eliminate some transient effects, this paper proposes an equilibrium prediction method for first order dynamic systems using an exponential regression. This method is particularly valuable for many commercial and industrial energy system, whose dynamics are dominated by first order thermo-fluid effects. To illustrate the basic advantages of the proposed approach, Monte Carlo simulations are used. This is followed by three distinct experimental case studies to demonstrate the practical efficacy of the proposed method. First, the ability to predict the carbon dioxide level in classrooms allows for energy efficient control of the ventilation system and ensures occupant comfort. Second, predicting the optimal time to end the cool-down of an industrial sintering furnace allows for maximum part throughput and worker safety. Finally, fault detection and diagnosis methods for air conditioning systems typically use static system models; however, the transient response of many air conditioning signals may be approximated as first order, and therefore, the prediction model enables the use of static fault detection methods with transient data. In this paper, the equilibrium prediction method's performance will be quantified using both Monte Carlo simulations and case studies.


2014 ◽  
Vol 68 (2) ◽  
pp. 21301 ◽  
Author(s):  
Omeime Xerviar Esebamen ◽  
Göran Thungström ◽  
Hans-Erik Nilsson ◽  
Anders Lundgren

Sign in / Sign up

Export Citation Format

Share Document