scholarly journals Atomic effects in astrophysical nuclear fusion reactions

2019 ◽  
Vol 11 ◽  
Author(s):  
Theodore E. Liolios

The electron-screening acceleration of laboratory fusion reactions at astrophysical' energies is an unsolved problem of great importance to astrophysics. That effect is modeled here by considering the fusion of hydrogen-like atoms whose electron probability density is used in Poisson 's equation in order to derive the corresponding screened Coulomb potential energy. That way atomic excitations and deformations of the fusing atoms can be taken into account. Those potentials are then treated semiclassically in order to obtain the screening (accelerating) factor of the reaction. By means of the proposed model the effect of a superstrong magnetic field on laboratory Hydrogen fusion reactions is investigated here for the first time showing that, despite the considerable increase in the cross section of the dd reaction, the pp reaction is still too slow to justify experimentation. The proposed model is finally applied on the H2 (d, p) H3 fusion reaction describing satisfactorily the experimental data although some ambiguity remains regarding the molecular nature of the deuteron target. Notably, the present method gives a sufficiently high screening energy for Hydrogen fusion reactions so that the take-away energy of the spectator nucleus can also be taken into account.

Atoms ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 30 ◽  
Author(s):  
Manfred von Hellermann ◽  
Maarten de Bock ◽  
Oleksandr Marchuk ◽  
Detlev Reiter ◽  
Stanislav Serov ◽  
...  

The concept and structure of the Simulation of Spectra (SOS) code is described starting with an introduction to the physics background of the project and the development of a simulation tool enabling the modeling of charge-exchange recombination spectroscopy (CXRS) and associated passive background spectra observed in hot fusion plasmas. The generic structure of the code implies its general applicability to any fusion device, the development is indeed based on over two decades of spectroscopic observations and validation of derived plasma data. Four main types of active spectra are addressed in SOS. The first type represents thermal low-Z impurity ions and the associated spectral background. The second type of spectra represent slowing-down high energy ions created from either thermo-nuclear fusion reactions or ions from injected high energy neutral beams. Two other modules are dedicated to CXRS spectra representing bulk plasma ions (H+, D+, or T+) and beam emission spectroscopy (BES) or Motional Stark Effect (MSE) spectrum appearing in the same spectral range. The main part of the paper describes the physics background for the underlying emission processes: active and passive CXRS emission, continuum radiation, edge line emission, halo and plume effect, or finally the charge exchange (CX) cross-section effects on line shapes. The description is summarized by modeling the fast ions emissions, e.g., either of the α particles of the fusion reaction or of the beam ions itself.


2021 ◽  
Vol 1 ◽  
pp. 67
Author(s):  
Silvano Tosti

Background: So far the feasibility of nuclear reactions has been studied only through the evaluation of the reaction rate, which gives us information about the kinetics, while the thermodynamic analysis has been limited to evaluations of the change in enthalpy without any consideration of the change in entropy. Methods: This work examines the thermodynamics of nuclear fusion reactions through a simplified approach. The analysis introduces the thermodynamic study of fission and fusion reactions through their comparison with a chemical process. Results: The main result is that fission reactions are always spontaneous (ΔG < 0) since a lot of energy is released in the form of heat and the system moves spontaneously towards a more disordered state. In contrast, fusion reactions are spontaneous only when the enthalpic contribution of the change in Gibbs energy overcomes the entropic contribution. This condition is verified when the temperature of the process is below a characteristic value T*, calculated as the ratio between the energy corresponding to the mass defect and the change of entropy of the fusion reaction. Conclusions: Due to the unavailability of data related to entropy changes in fusion reactions, only a qualitative thermodynamic analysis has been carried out. Through such analysis, the influence of the operating conditions over the spontaneity of fusion processes has been discussed. The final considerations emphasize the role of the thermodynamics analysis that should be implemented in the current studies that, so far, have been mainly based on the assessment of the reaction rate and exothermicity of fusion reactions.


2021 ◽  
Vol 1 ◽  
pp. 67
Author(s):  
Silvano Tosti

Background: So far the feasibility of nuclear reactions has been studied only through the evaluation of the reaction rate, which gives us information about the kinetics, while the thermodynamic analysis has been limited to evaluations of the change in enthalpy without any consideration of the change in entropy. Methods: This work examines the thermodynamics of nuclear fusion reactions through a simplified approach. The analysis introduces the thermodynamic study of fission and fusion reactions through their comparison with a chemical process. Results: The main result is that fission reactions are always spontaneous (ΔG < 0) since a lot of energy is released in the form of heat and the system moves spontaneously towards a more disordered state. In contrast, fusion reactions are spontaneous only when the enthalpic contribution of the change in Gibbs free energy overcomes the entropic contribution. This condition is verified when the temperature of the process is below a characteristic value T*, calculated as the ratio between the energy corresponding to the mass defect and the change of entropy of the fusion reaction. Conclusions: Due to the unavailability of data related to entropy changes in fusion reactions, only a qualitative thermodynamic analysis has been carried out. Through such analysis, the influence of the operating conditions over the spontaneity of fusion processes has been discussed. The final considerations emphasize the role of the thermodynamics analysis that should be implemented in the current studies that, so far, have been mainly based on the assessment of the reaction rate and exothermicity of fusion reactions.


2021 ◽  
Vol 1 ◽  
pp. 67
Author(s):  
Silvano Tosti

Background: So far the feasibility of nuclear reactions has been studied only through the evaluation of the reaction rate, which gives us information about the kinetics, while the thermodynamic analysis has been limited to evaluations of the change in enthalpy without any consideration of the change in entropy. Methods: This work examines the thermodynamics of nuclear fusion reactions through a simplified approach. The analysis introduces the thermodynamic study of fission and fusion reactions through their comparison with a chemical process. Results: The main result is that fission reactions are always spontaneous (ΔG < 0) since a lot of energy is released in the form of heat and the system moves spontaneously towards a more disordered state. In contrast, fusion reactions are spontaneous only when the enthalpic contribution of the change in Gibbs free energy overcomes the entropic contribution. This condition is verified when the temperature of the process is below a characteristic value T*, calculated as the ratio between the energy corresponding to the mass defect and the change of entropy of the fusion reaction. Conclusions: Due to the unavailability of data related to entropy changes in fusion reactions, only a qualitative thermodynamic analysis has been carried out. Through such analysis, the influence of the operating conditions over the spontaneity of fusion processes has been discussed. The final considerations emphasize the role of the thermodynamics analysis that should be implemented in the current studies that, so far, have been mainly based on the assessment of the reaction rate and exothermicity of fusion reactions.


1990 ◽  
Vol 160 (8) ◽  
pp. 47-103 ◽  
Author(s):  
Leonid I. Men'shikov ◽  
L.N. Somov

Engevista ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. 1496
Author(s):  
Relly Victoria Virgil Petrescu ◽  
Raffaella Aversa ◽  
Antonio Apicella ◽  
Florian Ion Petrescu

Despite research carried out around the world since the 1950s, no industrial application of fusion to energy production has yet succeeded, apart from nuclear weapons with the H-bomb, since this application does not aims at containing and controlling the reaction produced. There are, however, some other less mediated uses, such as neutron generators. The fusion of light nuclei releases enormous amounts of energy from the attraction between the nucleons due to the strong interaction (nuclear binding energy). Fusion it is with nuclear fission one of the two main types of nuclear reactions applied. The mass of the new atom obtained by the fusion is less than the sum of the masses of the two light atoms. In the process of fusion, part of the mass is transformed into energy in its simplest form: heat. This loss is explained by the Einstein known formula E=mc2. Unlike nuclear fission, the fusion products themselves (mainly helium 4) are not radioactive, but when the reaction is used to emit fast neutrons, they can transform the nuclei that capture them into isotopes that some of them can be radioactive. In order to be able to start and to be maintained with the success the nuclear fusion reactions, it is first necessary to know all this reactions very well. This means that it is necessary to know both the main reactions that may take place in a nuclear reactor and their sense and effects. The main aim is to choose and coupling the most convenient reactions, forcing by technical means for their production in the reactor. Taking into account that there are a multitude of possible variants, it is necessary to consider in advance the solutions that we consider them optimal. The paper takes into account both variants of nuclear fusion, and cold and hot. For each variant will be mentioned the minimum necessary specifications.


2014 ◽  
Vol 69 (2) ◽  
pp. 137-157 ◽  
Author(s):  
Shogo Mlozi

Purpose – This article aims to test the relationship between expected attractiveness-satisfaction-loyalty for international adventure tourists visiting Tanzania. The proposed model is based on travel consumer behavior theoretical constructs extracted from the literature. Design/methodology/approach – This article aims to test the relationship between expected attractiveness-satisfaction-loyalty for international adventure tourists visiting Tanzania. The proposed model is based on travel consumer behavior theoretical constructs extracted from the literature. Findings – The findings for overall model differed from the moderating factors of high risk, low risk, first-time visit and repeat visit. Also, the results are interesting when satisfaction is tested as a mediator. Practical implications – Practitioners could consider the fact that repeat visits may change tourists’ perceptions toward destination and may even increase their inclination to take on risks. This may impact innovation of consumer products in tourism. Also, policy makers could benefit on how loyalty programs can be developed to increase performance. Originality/value – The study offers specific strategic recommendations toward different groups of tourists (i.e. first-time, repeat visitors, risk averse, risk seeking) and proposes logic for setting up a loyalty program as a long-term strategy for success.


2016 ◽  
Vol 10 (10) ◽  
pp. 133
Author(s):  
Mohammad Ali Nasiri Khalili ◽  
Mostafa Kafaei Razavi ◽  
Morteza Kafaee Razavi

Items supplies planning of a logistic system is one of the major issue in operations research. In this article the aim is to determine how much of each item per month from each supplier logistics system requirements must be provided. To do this, a novel multi objective mixed integer programming mathematical model is offered for the first time. Since in logistics system, delivery on time is very important, the first objective is minimization of time in delivery on time costs (including lack and maintenance costs) and the cost of purchasing logistics system. The second objective function is minimization of the transportation supplier costs. Solving the mathematical model shows how to use the Multiple Objective Decision Making (MODM) can provide the ensuring policy and transportation logistics needed items. This model is solved with CPLEX and computational results show the effectiveness of the proposed model.


2017 ◽  
Vol 117 (9) ◽  
pp. 1866-1889 ◽  
Author(s):  
Vahid Shokri Kahi ◽  
Saeed Yousefi ◽  
Hadi Shabanpour ◽  
Reza Farzipoor Saen

Purpose The purpose of this paper is to develop a novel network and dynamic data envelopment analysis (DEA) model for evaluating sustainability of supply chains. In the proposed model, all links can be considered in calculation of efficiency score. Design/methodology/approach A dynamic DEA model to evaluate sustainable supply chains in which networks have series structure is proposed. Nature of free links is defined and subsequently applied in calculating relative efficiency of supply chains. An additive network DEA model is developed to evaluate sustainability of supply chains in several periods. A case study demonstrates applicability of proposed approach. Findings This paper assists managers to identify inefficient supply chains and take proper remedial actions for performance optimization. Besides, overall efficiency scores of supply chains have less fluctuation. By utilizing the proposed model and determining dual-role factors, managers can plan their supply chains properly and more accurately. Research limitations/implications In real world, managers face with big data. Therefore, we need to develop an approach to deal with big data. Practical implications The proposed model offers useful managerial implications along with means for managers to monitor and measure efficiency of their production processes. The proposed model can be applied in real world problems in which decision makers are faced with multi-stage processes such as supply chains, production systems, etc. Originality/value For the first time, the authors present additive model of network-dynamic DEA. For the first time, the authors outline the links in a way that carry-overs of networks are connected in different periods and not in different stages.


Sign in / Sign up

Export Citation Format

Share Document