scholarly journals Simulation of Spectra Code (SOS) for ITER Active Beam Spectroscopy

Atoms ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 30 ◽  
Author(s):  
Manfred von Hellermann ◽  
Maarten de Bock ◽  
Oleksandr Marchuk ◽  
Detlev Reiter ◽  
Stanislav Serov ◽  
...  

The concept and structure of the Simulation of Spectra (SOS) code is described starting with an introduction to the physics background of the project and the development of a simulation tool enabling the modeling of charge-exchange recombination spectroscopy (CXRS) and associated passive background spectra observed in hot fusion plasmas. The generic structure of the code implies its general applicability to any fusion device, the development is indeed based on over two decades of spectroscopic observations and validation of derived plasma data. Four main types of active spectra are addressed in SOS. The first type represents thermal low-Z impurity ions and the associated spectral background. The second type of spectra represent slowing-down high energy ions created from either thermo-nuclear fusion reactions or ions from injected high energy neutral beams. Two other modules are dedicated to CXRS spectra representing bulk plasma ions (H+, D+, or T+) and beam emission spectroscopy (BES) or Motional Stark Effect (MSE) spectrum appearing in the same spectral range. The main part of the paper describes the physics background for the underlying emission processes: active and passive CXRS emission, continuum radiation, edge line emission, halo and plume effect, or finally the charge exchange (CX) cross-section effects on line shapes. The description is summarized by modeling the fast ions emissions, e.g., either of the α particles of the fusion reaction or of the beam ions itself.

2021 ◽  
Vol 13 (1) ◽  
pp. 59-70
Author(s):  
Vladimir I. Vysotskii ◽  
◽  
Alla A. Kornilova ◽  
Mykhaylo V. Vysotskyy ◽  
◽  
...  

The paper considers the features and quantitative characteristics of the first successful laser experiments on the formation of a thermonuclear plasma and registration of neutrons in nuclear fusion reactions under pulsed irradiation of a LiD crystal. Quantitative analysis shows that the production of neutrons recorded in these experiments is not associated with thermonuclear reactions in hot laser plasma. The most probable mechanism of neutron generation is associated with nuclear reactions at low energies and is due to the formation of coherent correlated states (CCS) of deuterons. In this experiment, such states can be formed in two different processes: due to the effect of a shock wave in the undisturbed part of the target lattice on the vibrational state of deuterium nuclei or when deuterium nuclei with energy of about 500 eV move in the lattice. This part of the deuterium nuclei corresponds to the high-energy "tail" of the Maxwellian distribution of the total flux of particles entering from the laser plasma into the interplanar channel. In this second case, the process of the formation of the CCS is associated with the longitudinal periodicity of the interplanar crystal channel, which is equivalent to a nonstationary oscillator in the own coordinate system of moving particle. The expediency of repeating these experiments is shown, in which, in addition to neutrons, one should expect a more efficient generation of other nuclear fusion products due to low-energy reactions involving lithium isotopes from the target composition.


2019 ◽  
Vol 488 (1) ◽  
pp. 259-279 ◽  
Author(s):  
Rodrigo Fernández ◽  
Ben Margalit ◽  
Brian D Metzger

ABSTRACT We study mass ejection from accretion discs formed in the merger of a white dwarf with a neutron star or black hole. These discs are mostly radiatively inefficient and support nuclear fusion reactions, with ensuing outflows and electromagnetic transients. Here we perform time-dependent, axisymmetric hydrodynamic simulations of these discs including a physical equation of state, viscous angular momentum transport, a coupled 19-isotope nuclear network, and self-gravity. We find no detonations in any of the configurations studied. Our global models extend from the central object to radii much larger than the disc. We evolve these global models for several orbits, as well as alternate versions with an excised inner boundary to much longer times. We obtain robust outflows, with a broad velocity distribution in the range 102–104 km s−1. The outflow composition is mostly that of the initial white dwarf, with burning products mixed in at the ${\lesssim } 10\rm {-}30{{\ \rm per\ cent}}$ level by mass, including up to ∼10−2 M⊙ of 56Ni. These heavier elements (plus 4He) are ejected within ≲ 40° of the rotation axis, and should have higher average velocities than the lighter elements that make up the white dwarf. These results are in broad agreement with previous one- and two-dimensional studies, and point to these systems as progenitors of rapidly rising (∼ few day) transients. If accretion on to the central BH/NS powers a relativistic jet, these events could be accompanied by high-energy transients with peak luminosities ∼1047–1050 erg s−1 and peak durations of up to several minutes, possibly accounting for events like CDF-S XT2.


2021 ◽  
Vol 1 ◽  
pp. 67
Author(s):  
Silvano Tosti

Background: So far the feasibility of nuclear reactions has been studied only through the evaluation of the reaction rate, which gives us information about the kinetics, while the thermodynamic analysis has been limited to evaluations of the change in enthalpy without any consideration of the change in entropy. Methods: This work examines the thermodynamics of nuclear fusion reactions through a simplified approach. The analysis introduces the thermodynamic study of fission and fusion reactions through their comparison with a chemical process. Results: The main result is that fission reactions are always spontaneous (ΔG < 0) since a lot of energy is released in the form of heat and the system moves spontaneously towards a more disordered state. In contrast, fusion reactions are spontaneous only when the enthalpic contribution of the change in Gibbs energy overcomes the entropic contribution. This condition is verified when the temperature of the process is below a characteristic value T*, calculated as the ratio between the energy corresponding to the mass defect and the change of entropy of the fusion reaction. Conclusions: Due to the unavailability of data related to entropy changes in fusion reactions, only a qualitative thermodynamic analysis has been carried out. Through such analysis, the influence of the operating conditions over the spontaneity of fusion processes has been discussed. The final considerations emphasize the role of the thermodynamics analysis that should be implemented in the current studies that, so far, have been mainly based on the assessment of the reaction rate and exothermicity of fusion reactions.


2021 ◽  
Vol 1 ◽  
pp. 67
Author(s):  
Silvano Tosti

Background: So far the feasibility of nuclear reactions has been studied only through the evaluation of the reaction rate, which gives us information about the kinetics, while the thermodynamic analysis has been limited to evaluations of the change in enthalpy without any consideration of the change in entropy. Methods: This work examines the thermodynamics of nuclear fusion reactions through a simplified approach. The analysis introduces the thermodynamic study of fission and fusion reactions through their comparison with a chemical process. Results: The main result is that fission reactions are always spontaneous (ΔG < 0) since a lot of energy is released in the form of heat and the system moves spontaneously towards a more disordered state. In contrast, fusion reactions are spontaneous only when the enthalpic contribution of the change in Gibbs free energy overcomes the entropic contribution. This condition is verified when the temperature of the process is below a characteristic value T*, calculated as the ratio between the energy corresponding to the mass defect and the change of entropy of the fusion reaction. Conclusions: Due to the unavailability of data related to entropy changes in fusion reactions, only a qualitative thermodynamic analysis has been carried out. Through such analysis, the influence of the operating conditions over the spontaneity of fusion processes has been discussed. The final considerations emphasize the role of the thermodynamics analysis that should be implemented in the current studies that, so far, have been mainly based on the assessment of the reaction rate and exothermicity of fusion reactions.


2019 ◽  
Vol 11 ◽  
Author(s):  
Theodore E. Liolios

The electron-screening acceleration of laboratory fusion reactions at astrophysical' energies is an unsolved problem of great importance to astrophysics. That effect is modeled here by considering the fusion of hydrogen-like atoms whose electron probability density is used in Poisson 's equation in order to derive the corresponding screened Coulomb potential energy. That way atomic excitations and deformations of the fusing atoms can be taken into account. Those potentials are then treated semiclassically in order to obtain the screening (accelerating) factor of the reaction. By means of the proposed model the effect of a superstrong magnetic field on laboratory Hydrogen fusion reactions is investigated here for the first time showing that, despite the considerable increase in the cross section of the dd reaction, the pp reaction is still too slow to justify experimentation. The proposed model is finally applied on the H2 (d, p) H3 fusion reaction describing satisfactorily the experimental data although some ambiguity remains regarding the molecular nature of the deuteron target. Notably, the present method gives a sufficiently high screening energy for Hydrogen fusion reactions so that the take-away energy of the spectator nucleus can also be taken into account.


2020 ◽  
Vol 98 (4) ◽  
pp. 13-19
Author(s):  
V. Aulin ◽  
S. Lysenko ◽  
A. Hrinkiv ◽  
A. Chernai ◽  
I. Zhylova ◽  
...  

It has been found that during frictional contact in separate local areas of a thin surface layer of parts under significant loads and deformations and high contact temperatures, the material of the tribocontact zone of parts transforms into a special activating unstable state of magma-plasma or triboplasma. General issues in which the nature of the processes of friction and wear of mating parts is clarified are considered at a higher fundamental level with the involvement of nanotribology. A number of processes that accompany interactions of triboconjugations of parts are analyzed: mechanoemission, mechanochemical, gas-discharge, etc., tribochemical reactions, fluxes of high-energy particles: excited molecules, atoms, ions, fast electrons, phonons (sound quanta and quanta of electromagnetic radiation). Regularities of additivity of elastic and magnetic aftereffect in the volumetric parts and surface layers of tribo-interface parts made of ferromagnetic materials and alloys have been revealed. Also, the regularity of the additivity of the diffusion aftereffect in their surface layers has been established. A tribophysical model of self-organization is built on the basis of a carbon-nitrogen cycle of tribochemical reactions that have the content of thermonuclear fusion reactions and which can be considered at the nanoscale. In these reactions, the carbon atom plays the role of a catalyst for the process of fusion of protons with subsequent transformation into a radioactive isotope, which decays into ordinary carbon and helium. It has been established that the mechanism of nuclear fusion reactions in the surface layers of triboconjugation parts is due to the directional movement of dislocations in the crystal structures of materials with the implementation of the proton cycle and the conversion of hydrogen into helium. It has been shown that this makes it possible to change the idea of the mechanocaloric effect, the process of friction and wear, and to substantiate a number of effects and processes from the physical positions of nanotribology. This will allow the creation of competitive tribotechnologies in various industries.


2021 ◽  
Vol 1 ◽  
pp. 67
Author(s):  
Silvano Tosti

Background: So far the feasibility of nuclear reactions has been studied only through the evaluation of the reaction rate, which gives us information about the kinetics, while the thermodynamic analysis has been limited to evaluations of the change in enthalpy without any consideration of the change in entropy. Methods: This work examines the thermodynamics of nuclear fusion reactions through a simplified approach. The analysis introduces the thermodynamic study of fission and fusion reactions through their comparison with a chemical process. Results: The main result is that fission reactions are always spontaneous (ΔG < 0) since a lot of energy is released in the form of heat and the system moves spontaneously towards a more disordered state. In contrast, fusion reactions are spontaneous only when the enthalpic contribution of the change in Gibbs free energy overcomes the entropic contribution. This condition is verified when the temperature of the process is below a characteristic value T*, calculated as the ratio between the energy corresponding to the mass defect and the change of entropy of the fusion reaction. Conclusions: Due to the unavailability of data related to entropy changes in fusion reactions, only a qualitative thermodynamic analysis has been carried out. Through such analysis, the influence of the operating conditions over the spontaneity of fusion processes has been discussed. The final considerations emphasize the role of the thermodynamics analysis that should be implemented in the current studies that, so far, have been mainly based on the assessment of the reaction rate and exothermicity of fusion reactions.


1990 ◽  
Vol 160 (8) ◽  
pp. 47-103 ◽  
Author(s):  
Leonid I. Men'shikov ◽  
L.N. Somov

Engevista ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. 1496
Author(s):  
Relly Victoria Virgil Petrescu ◽  
Raffaella Aversa ◽  
Antonio Apicella ◽  
Florian Ion Petrescu

Despite research carried out around the world since the 1950s, no industrial application of fusion to energy production has yet succeeded, apart from nuclear weapons with the H-bomb, since this application does not aims at containing and controlling the reaction produced. There are, however, some other less mediated uses, such as neutron generators. The fusion of light nuclei releases enormous amounts of energy from the attraction between the nucleons due to the strong interaction (nuclear binding energy). Fusion it is with nuclear fission one of the two main types of nuclear reactions applied. The mass of the new atom obtained by the fusion is less than the sum of the masses of the two light atoms. In the process of fusion, part of the mass is transformed into energy in its simplest form: heat. This loss is explained by the Einstein known formula E=mc2. Unlike nuclear fission, the fusion products themselves (mainly helium 4) are not radioactive, but when the reaction is used to emit fast neutrons, they can transform the nuclei that capture them into isotopes that some of them can be radioactive. In order to be able to start and to be maintained with the success the nuclear fusion reactions, it is first necessary to know all this reactions very well. This means that it is necessary to know both the main reactions that may take place in a nuclear reactor and their sense and effects. The main aim is to choose and coupling the most convenient reactions, forcing by technical means for their production in the reactor. Taking into account that there are a multitude of possible variants, it is necessary to consider in advance the solutions that we consider them optimal. The paper takes into account both variants of nuclear fusion, and cold and hot. For each variant will be mentioned the minimum necessary specifications.


Author(s):  
F. Frontera ◽  
E. Virgilli ◽  
C. Guidorzi ◽  
P. Rosati ◽  
R. Diehl ◽  
...  

AbstractNuclear astrophysics, and particularly nuclear emission line diagnostics from a variety of cosmic sites, has remained one of the least developed fields in experimental astronomy, despite its central role in addressing a number of outstanding questions in modern astrophysics. Radioactive isotopes are co-produced with stable isotopes in the fusion reactions of nucleosynthesis in supernova explosions and other violent events, such as neutron star mergers. The origin of the 511 keV positron annihilation line observed in the direction of the Galactic Center is a 50-year-long mystery. In fact, we still do not understand whether its diffuse large-scale emission is entirely due to a population of discrete sources, which are unresolved with current poor angular resolution instruments at these energies, or whether dark matter annihilation could contribute to it. From the results obtained in the pioneering decades of this experimentally-challenging window, it has become clear that some of the most pressing issues in high-energy astrophysics and astro-particle physics would greatly benefit from significant progress in the observational capabilities in the keV-to-MeV energy band. Current instrumentation is in fact not sensitive enough to detect radioactive and annihilation lines from a wide variety of phenomena in our and nearby galaxies, let alone study the spatial distribution of their emission. In this White Paper (WP), we discuss how unprecedented studies in this field will become possible with a new low-energy gamma-ray space experiment, called ASTENA (Advanced Surveyor of Transient Events and Nuclear Astrophysics), which combines new imaging, spectroscopic and polarization capabilities. In a separate WP (Guidorzi et al. 39), we discuss how the same mission concept will enable new groundbreaking studies of the physics of Gamma–Ray Bursts and other high-energy transient phenomena over the next decades.


Sign in / Sign up

Export Citation Format

Share Document