scholarly journals Census of biodiversity in marine caves of the eastern Mediterranean Sea

2015 ◽  
Vol 16 (1) ◽  
pp. 245 ◽  
Author(s):  
V. GEROVASILEIOU ◽  
C. CHINTIROGLOU ◽  
D. VAFIDIS ◽  
D. KOUTSOUBAS ◽  
M. SINI ◽  
...  

Scientific information on the biodiversity of marine caves in the eastern Mediterranean is limited, especially when considering the extensively studied caves of the north-western and central Mediterranean. Aiming to enhance current knowledge regarding cave communities, this study represents a first assessment of the marine cave biota of the eastern Mediterranean, as this has been defined by the European Union’s Marine Strategy Framework Directive (MSFD). Information retrieved from an extensive overview of relevant scientific documents was combined with original data recorded from 23 marine caves of the north-eastern Mediterranean. Our results report a total of 520 taxa recorded in eastern Mediterranean marine caves to date, the majority of which are sponges, polychaetes, rhodophytes, bivalves, fishes, and gastropods. These include several protected, endemic, and alien species. However, not all taxonomic groups have been equally studied among different areas and future studies are expected to raise the number of endemic and alien species. The overall observed trend is that the reported species number is generally related to sampling effort and scientific expertise. The most well-studied marine cave communities of the eastern Mediterranean are those of the Aegean Sea (especially its northern sector), which presented the highest number of species, followed by those of the Levantine. Furthermore, our research in Aegean caves revealed numerous new records for the marine cave fauna of the eastern basin, while several species are reported for the first time in the marine cave habitat. The critical need for further scientific research, monitoring, and conservation of this unique ecosystem was highlighted by (i) the presence of certain species endemic to the eastern Mediterranean coupled with a high proportion of alien species, especially in the Levantine, and (ii) the marine cave habitat availability in isolated insular areas of the eastern Mediterranean.

2019 ◽  
Author(s):  
Monika J. Barcikowska ◽  
Sarah B. Kapnick ◽  
Lakshmi Krishnamurty ◽  
Simone Russo ◽  
Annalisa Cherchi ◽  
...  

Abstract. The realistic simulation of the summer Mediterranean climate requires not only refined spatial scales, but also an adequate representation of land-atmosphere interactions and teleconnections. Addressing all of these issues remains a challenge for most of the CMIP3/CMIP5 generation models. In this study we analyze high-resolution (~0.5° lat x lon) RCP8.5 future projections of the Geophysical Fluid Dynamics Laboratory CM2.5 model with a new incorporated land model (LM3). The simulated regional future changes suggest pronounced warming and drying over most parts of the Mediterranean. However the changes are distinctively less radical when compared with the CMIP5 multimodel ensemble. Moreover, changes over the Southeast (off the coast area of the Balkans) and Central Europe indicate not only a very modest warming, compared to the CMIP5 projections, but also wetting tendencies. The difference of CM2.5 projections of future changes over previous-generation models highlights the importance of a) a correctly projected magnitude of changes of the North Atlantic Oscillation and its regional impacts, which have the capacity to partly offset the anthropogenic warming and drying over the western and central Mediterranean; b) a refined representation of land surface-atmospheric interactions, which are a governing factor for thermal- and hydro-climate over Central and Southeastern Europe. The CM2.5 projections also indicate a maximum of warming (Levant) and drying (Asia Minor) over the eastern Mediterranean. The changes derived in this region indicate a decreasing influence of atmospheric dynamics in maintaining the regional temperature and precipitation balance and instead an increasing influence of local surface temperature on the local surface atmospheric circulation.


2020 ◽  
Vol 68 (1) ◽  
pp. 1
Author(s):  
Nicole F. Clark ◽  
Jen A. McComb ◽  
Andrew W. Taylor-Robinson

In order to study the relationships between mistletoes and their host species, comprehensive collections of both mistletoes and hosts are needed. The effect of sampling effort on the estimation of mistletoe host range was demonstrated in a comparison of an inventory of host mistletoe interactions published by Downey in 1998 and a 2019 inventory presented here, which is based on data from collections in the Australian Virtual Herbarium and information in the literature. New hosts were recorded for 93% of the 90 Australian mistletoes. There were 338 previously known hosts recorded to be parasitised by additional mistletoe species, and 317 new host species that were not previously known as mistletoe hosts (25 being alien species). These were from 78 new host genera and 13 new host families. The total number of host species was 1186 within 327 genera from 92 host families. A total of 63% of all Australian mistletoes parasitise species of either Eucalyptus or Acacia or both these genera. The large rise in host species recorded in less than two decades between inventories suggests that current knowledge of hosts is still incomplete, such that further new hosts will be discovered in future. Some mistletoe species show a strong preference to one host family or genus but due to insufficient collecting it is premature to conclude that any of the three species known from a single host are host specific.


2021 ◽  
Vol 8 ◽  
Author(s):  
Andrzej Pisera ◽  
Vasilis Gerovasileiou

Desmas-bearing demosponges known as lithistids have heavily silicified skeleton and occur typically in bathyal environments of warm and tropical areas but may be found in certain shallow marine caves. Here we report, for the first time two lithistid species, i.e., Neophrissospongia endoumensis, and N. cf. nana, that were earlier known from Western Mediterranean marine caves, from four marine caves in the north-eastern Mediterranean, and their congener Neophrissospongia nolitangere from deep waters (ca. 300 m) of the Aegean Sea. All marine caves, and sections within these caves, where lithistids occur, have freshwater springs. We interpret this surprising association between lithistids and freshwater input by elevated concentration of silica in water in cave sections where such springs occur, being 8–11 times higher in comparison with shallow water outside caves, and comparable to that of deep waters, that promoted lithistids’ development. One of the studied caves harbored an abundant population of N. endoumensis which formed large masses. The age estimation of these lithistids, based on known growth rate of related deep-water sponges, suggest that they could be approximately 769–909 years old in the case of the largest specimen observed, about 100 cm large. These sponges could have colonized the caves from adjacent deep-water areas not earlier than 7,000–3,000 years ago, after the last glaciation, because earlier they were emerged. High variability of spicules, especially microscleres, and underdevelopment of megascleres may be related to silicic acid concentration.


2012 ◽  
Vol 13 (2) ◽  
pp. 328 ◽  
Author(s):  
Α. ZENETOS ◽  
S. GOFAS ◽  
C. MORRI ◽  
A. ROSSO ◽  
D. VIOLANTI ◽  
...  

More than 60 marine non-indigenous species (NIS) have been removed from previous lists and 84 species have been added, bringing the total to 986 alien species in the Mediterranean [775 in the eastern Mediterranean (EMED), 249 in the central Mediterranean (CMED), 190 in the Adriatic Sea (ADRIA) and 308 in the western Mediterranean (WMED)]. There were 48 new entries since 2011 which can be interpreted as approximately one new entry every two weeks. The number of alien species continues to increase, by 2-3 species per year for macrophytes, molluscs and polychaetes, 3-4 species per year for crustaceans, and 6 species per year for fish. The dominant group among alien species is molluscs (with 215 species), followed by crustaceans (159) and polychaetes (132). Macrophytes are the leading group of NIS in the ADRIA and the WMED, reaching 26-30% of all aliens, whereas in the EMED they barely constitute 10% of the introductions. In the EMED, molluscs are the most species-rich group, followed by crustaceans, fish and polychaetes. More than half (54%) of the marine alien species in the Mediterranean were probably introduced by corridors (mainly Suez). Shipping is blamed directly for the introduction of only 12 species, whereas it is assumed to be the most likely pathway of introduction (via ballasts or fouling) of another 300 species. For approximately 100 species shipping is a probable pathway along with the Suez Canal and/or aquaculture. Approximately 20 species have been introduced with certainty via aquaculture, while >50 species (mostly macroalgae), occurring in the vicinity of oyster farms, are assumed to be introduced accidentally as contaminants of imported species. A total of 18 species are assumed to have been introduced by the aquarium trade. Lessepsian species decline westwards, while the reverse pattern is evident for ship-mediated species and for those introduced with aquaculture. There is an increasing trend in new introductions via the Suez Canal and via shipping.


2010 ◽  
Vol 11 (2) ◽  
pp. 381 ◽  
Author(s):  
A. ZENETOS ◽  
S. GOFAS ◽  
M. VERLAQUE ◽  
M.E. CINAR ◽  
J.E. GARCIA RASO ◽  
...  

The state-of-art on alien species in the Mediterranean Sea is presented, making distinctions among the four subregions defined in the EU Marine Strategy Framework Directive: (i) the Western Mediterranean Sea (WMED); (ii) the Central Mediterranean Sea (CMED); (iii) the Adriatic Sea (ADRIA); and (iv) the Eastern Mediterranean Sea (EMED). The updated checklist (December 2010) of marine alien species within each subregion, along with their acclimatization status and origin, is provided. A total of 955 alien species is known in the Mediterranean, the vast majority of them having being introduced in the EMED (718), less in the WMED (328) and CMED (267) and least in the Adriatic (171). Of these, 535 species (56%) are established in at least one area.Despite the collective effort of experts who attempted in this work, the number of introduced species remains probably underestimated. Excluding microalgae, for which knowledge is still insufficient, aliens have increased the total species richness of the Mediterranean Sea by 5.9%. This figure should not be directly read as an indication of higher biodiversity, as spreading of so many aliens within the basin is possibly causing biotic homogenization. Thermophilic species, i.e. Indo-Pacific, Indian Ocean, Red Sea, Tropical Atlantic, Tropical Pacific, and circum(sub)tropical, account for 88.4% of the introduced species in the EMED, 72.8% in the CMED, 59.3% in the WMED and 56.1% in the Adriatic. Cold water species, i.e. circumboreal, N Atlantic, and N Pacific, make up a small percentage of the introduced species, ranging between 4.2% and 21.6% and being more numerous in the Adriatic and less so in the EMED.Species that are classified as invasive or potentially invasive are 134 in the whole of the Mediterranean: 108 are present in the EMED, 76 in the CMED, 53 in the Adriatic and 64 in the WMED. The WMED hosts most invasive macrophytes, whereas the EMED has the lion’s share in polychaetes, crustaceans, molluscs and fish.


2016 ◽  
Vol 8 (1) ◽  
pp. 567-578 ◽  
Author(s):  
Alessandro Incarbona ◽  
Enrico Di Stefano ◽  
Rodolfo Sprovieri ◽  
Serena Ferraro

AbstractThe Mediterranean Sea is an ideal location to test the response of organisms to hydrological transformations driven by climate change. Here we review studies carried out on planktonic foraminifera and coccolithophores during the late Quaternary and attempt the comparison of data scattered in time and space. We highlight the prompt response of surface water ecosystems to both orbital- and suborbital-climatic variations.A markedly different spatial response was observed in calcareous plankton assemblages, possibly due to the influence of the North Atlantic climatic system in the western, central and northern areas and of the monsoon system in the easternmost and southern sites. Orbital-induced climatic dynamics led to productive surface waters in the northern, western and central Mediterranean Sea during the last glacial and to distinct deep chlorophyll maximum layers in the eastern Mediterranean Sea coinciding with bottom anoxia episodes. High-frequency planktonic modifications are well documented in the Sicily Channel and Alboran Sea and highlight the occurrence of different steps within a single stadial (cold phase)/interstadial (warm phase) oscillation.The review of planktonic organisms in the marine sedimentary archive casts light on the uniqueness of the Mediterranean Sea, especially in terms of climatic/oceanographic/biological interaction and influence of different climatic systems on distinct areas. Further research is needed in the eastern Mediterranean Sea where results are obscured by low-resolution sedimentary records and by a strong focus on sapropel deposition dynamics.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 303 ◽  
Author(s):  
Benalia Haddad ◽  
Alessandro Silvestre Gristina ◽  
Francesco Mercati ◽  
Abd Elkader Saadi ◽  
Nassima Aiter ◽  
...  

Genetic diversity and population structure studies of local olive germplasm are important to safeguard biodiversity, for genetic resources management and to improve the knowledge on the distribution and evolution patterns of this species. In the present study Algerian olive germplasm was characterized using 16 nuclear (nuSSR) and six chloroplast (cpSSR) microsatellites. Algerian varieties, collected from the National Olive Germplasm Repository (ITAFV), 10 of which had never been genotyped before, were analyzed. Our results highlighted the presence of an exclusive genetic core represented by 13 cultivars located in a mountainous area in the North-East of Algeria, named Little Kabylie. Comparison with published datasets, representative of the Mediterranean genetic background, revealed that the most Algerian varieties showed affinity with Central and Eastern Mediterranean cultivars. Interestingly, cpSSR phylogenetic analysis supported results from nuSSRs, highlighting similarities between Algerian germplasm and wild olives from Greece, Italy, Spain and Morocco. This study sheds light on the genetic relationship of Algerian and Mediterranean olive germplasm suggesting possible events of secondary domestication and/or crossing and hybridization across the Mediterranean area. Our findings revealed a distinctive genetic background for cultivars from Little Kabylie and support the increasing awareness that North Africa represents a hotspot of diversity for crop varieties and crop wild relative species.


Biologia ◽  
2015 ◽  
Vol 70 (7) ◽  
Author(s):  
Simona Casavecchia ◽  
Nello Biscotti ◽  
Simone Pesaresi ◽  
Edoardo Biondi

AbstractThe revision of the Paliurus spina-christi dominated vegetation of Europe is presented here. The study area includes the north-eastern part of Iberian Peninsula and Provence to the west, and spreads through the Apennine Peninsula to the Balkan Peninsula and up to Eastern Mediterranean areas. The phytosociological releves of Paliurus spina-christi dominated vegetation found in the literature for these European territories were gathered together in a phytosociological table. Floristic analysis, cluster analysis, and indirect gradient analysis were performed to determine the similarities and differences between the different Paliurus spina-christi dominated communities and their correlations with the main bioclimatic indices described in the literature. The various analyses highlight the existence of nine different associations (one of which is described here for the first time) that are attributed to different syntaxonomic levels.In the conclusion, a syntaxonomical scheme is proposed that classifies the European vegetation of shrublands in the class Rhamno-Prunetea which includes the class Paliuretea. Currently, we recognized three orders within this class: Prunetalia spinosae for central and south-central Europe; Pyro spinosae-Rubetalia ulmifolii within the Temperate oceanic bioclimate of the sub-Mediterranean variant; Paliuretalia spinae-christi with a central Mediterranean and sub-Mediterranean distribution, that mainly occurs in the central-eastern Mediterranean (Southern Apennine Peninsula) and the Balkans.Finally, a part of the shrub vegetation dominated by Paliurus spina-christi is referred to the class Quercetea ilicis, the order Pistacio lentisci-Rhamnetalia alaterni, the alliance Oleo sylvestris-Ceratonion siliquae and the suballiance Oleo sylvestris- Paliurenion spinae-christi that refers to thermophilous shrub communities that require high edaphic humidity.


2010 ◽  
Vol 26 (sup1) ◽  
pp. 219-240 ◽  
Author(s):  
P. Maiorano ◽  
L. Sion ◽  
R. Carlucci ◽  
F. Capezzuto ◽  
A. Giove ◽  
...  

2011 ◽  
Vol 12 (2) ◽  
pp. 509 ◽  
Author(s):  
A. ZENETOS ◽  
S. GOFAS ◽  
M. VERLAQUE ◽  
M.E. CINAR ◽  
J.E GARCIA RASO ◽  
...  

The state-of-art on alien species in the Mediterranean Sea is presented, making distinctions among the four subregions defined in the EU Marine Strategy Framework Directive: (i) the Western Mediterranean Sea (WMED); (ii) the Central Mediterranean Sea (CMED); (iii) the Adriatic Sea (ADRIA); and (iv) the Eastern Mediterranean Sea (EMED). The updated checklist (December 2010) of marine alien species within each subregion, along with their acclimatization status and origin, is provided. A total of 955 alien species is known in the Mediterranean, the vast majority of them having being introduced in the EMED (718), less in the WMED (328) and CMED (267) and least in the Adriatic (171). Of these, 535 species (56%) are established in at least one area.Despite the collective effort of experts who attempted in this work, the number of introduced species remains probably underestimated. Excluding microalgae, for which knowledge is still insufficient, aliens have increased the total species richness of the Mediterranean Sea by 5.9%. This figure should not be directly read as an indication of higher biodiversity, as spreading of so many aliens within the basin is possibly causing biotic homogenization. Thermophilic species, i.e. Indo-Pacific, Indian Ocean, Red Sea, Tropical Atlantic, Tropical Pacific, and circum(sub)tropical, account for 88.4% of the introduced species in the EMED, 72.8% in the CMED, 59.3% in the WMED and 56.1% in the Adriatic. Cold water species, i.e. circumboreal, N Atlantic, and N Pacific, make up a small percentage of the introduced species, ranging between 4.2% and 21.6% and being more numerous in the Adriatic and less so in the EMED.Species that are classified as invasive or potentially invasive are 134 in the whole of the Mediterranean: 108 are present in the EMED, 76 in the CMED, 53 in the Adriatic and 64 in the WMED. The WMED hosts most invasive macrophytes, whereas the EMED has the lion’s share in polychaetes, crustaceans, molluscs and fish.


Sign in / Sign up

Export Citation Format

Share Document