scholarly journals Recent hydrological status of the Aegean Sea derived from free drifting profilers

Author(s):  
DIMITRIS KASSIS ◽  
GERASIMOS KORRES

Being a semi-enclosed basin of the Mediterranean Sea, the Aegean Sea comprises a complex hydrology that plays a significant role in the hydrology of the Eastern Mediterranean Sea. Its interaction with many sub-basins, along with its contribution towards the formation of deep and intermediate water, makes it an ideal case for the study of hydrological changes in transitional areas. Since 2010, the operational monitoring of the basin has been significantly enriched due to the deployment of autonomous free-drifting profilers (Argo floats) under the framework of the newly formed Greek Argo Research Infrastructure activities. In this study the hydrological status of the area is examined for the period 2010 - 2017 using the temperature and salinity profiles acquired from Argo floats that operated in the basin. The profiles are analyzed together with complementary remote sensing and model outputs datasets in order to present the spatio-temporal distribution of the co-existent water masses and shed light on hydrological features and changes that took place throughout the basin in an attempt to reassess its hydrological status during the last decade. The distribution of the physical properties in different sub-regions and their interaction is examined reconstructing a general picture of strong latitudinal gradients in the T-S and σθ fields from the upper layers towards the deeper zones. Interannually, findings indicate changes of the Aegean water masses structure within the water-column. Deep homogenization in the upper layers is recorded mainly during the winter periods of 2011-2012, 2014-2015 and 2016-2017 in the southern, central, and northern parts of the area accordingly. The observed dense water formation events, along with mixing and advection appear to alterate the water column physical properties structure and affect the dynamics of the surface and sub-surface dominant water masses in the Aegean. The results further highlight the valuable information that can be extracted from the operation of free-drifting profilers in enclosed marginal seas similar to the Aegean case.

2006 ◽  
Vol 36 (9) ◽  
pp. 1841-1859 ◽  
Author(s):  
I. Gertman ◽  
N. Pinardi ◽  
Y. Popov ◽  
A. Hecht

Abstract The Aegean water masses and circulation structure are studied via two large-scale surveys performed during the late winters of 1988 and 1990 by the R/V Yakov Gakkel of the former Soviet Union. The analysis of these data sheds light on the mechanisms of water mass formation in the Aegean Sea that triggered the outflow of Cretan Deep Water (CDW) from the Cretan Sea into the abyssal basins of the eastern Mediterranean Sea (the so-called Eastern Mediterranean Transient). It is found that the central Aegean Basin is the site of the formation of Aegean Intermediate Water, which slides southward and, depending on their density, renews either the intermediate or the deep water of the Cretan Sea. During the winter of 1988, the Cretan Sea waters were renewed mainly at intermediate levels, while during the winter of 1990 it was mainly the volume of CDW that increased. This Aegean water mass redistribution and formation process in 1990 differed from that in 1988 in two major aspects: (i) during the winter of 1990 the position of the front between the Black Sea Water and the Levantine Surface Water was displaced farther north than during the winter of 1988 and (ii) heavier waters were formed in 1990 as a result of enhanced lateral advection of salty Levantine Surface Water that enriched the intermediate waters with salt. In 1990 the 29.2 isopycnal rose to the surface of the central basin and a large volume of CDW filled the Cretan Basin. It is found that, already in 1988, the 29.2 isopycnal surface, which we assume is the lowest density of the CDW, was shallower than the Kassos Strait sill and thus CDW egressed into the Eastern Mediterranean.


2015 ◽  
Vol 7 (2) ◽  
pp. 231-237 ◽  
Author(s):  
D. Hainbucher ◽  
V. Cardin ◽  
G. Siena ◽  
U. Hübner ◽  
M. Moritz ◽  
...  

Abstract. We report on data from an oceanographic cruise in the Mediterranean Sea on the German research vessel Poseidon in April 2014. Data were taken on a west–east section, starting at the Strait of Gibraltar and ending south-east of Crete, as well on sections in the Ionian and Adriatic Sea. The objectives of the cruise were threefold: to contribute to the investigation of the spatial evolution of the Levantine Intermediate Water (LIW) properties and of the deep water masses in the eastern Mediterranean Sea, and to investigate the mesoscale variability of the upper water column. The measurements include salinity, temperature, oxygen and currents and were conducted with a conductivity, temperature and depth(CTD)/rosette system, an underway CTD and an acoustic Doppler current profiler (ADCP). The sections are on tracks which have been sampled during several other cruises, thus supporting the opportunity to investigate the long-term temporal development of the different variables. The use of an underway CTD made it possible to conduct measurements of temperature and salinity with a high horizontal spacing of 6 nm between stations and a vertical spacing of 1 dbar for the upper 800 m of the water column.


2011 ◽  
Vol 12 (2) ◽  
pp. 413 ◽  
Author(s):  
E. LEFKADITOU ◽  
P. PERISTERAKI ◽  
N. CHARTOSIA ◽  
A. SALMAN

The neon flying squid Ommastrephes bartramii is found circumglobally in subtropical, temperate waters and sustains important fisheries in the North Pacific, but it is rarely encountered in the Mediterranean Sea. During the last decade, and particularly since 2004, the frequency of its presence in the Aegean Sea and nearby regions has increased, raising a question about a change in the species distribution and abundance in this area. In this study, we reviewed the literature on O. bartramii findings in the Mediterranean Sea and present new data describing body and beak morphometry, diet and the maturity of specimens recently collected from the easternmost basins. According to data from the entire Mediterranean Sea, collected individuals reached 66 cm in mantle length (ML), wherein only females were larger than 32 cm in ML. An isometric growth in body weight (BW) was shown, whereas the lower beak rostral length (LRL) was allometrically positive in relation to the ML. Occasional catches by jigs during experimental cruises provided most of the individuals recorded in the period from 1982-1992. In contrast, the most recent records are primarily comprised of mature females collected on or near the shore in the eastern basin and of predominantly smaller individuals from the western basin caught by professional jigging fisheries. The distribution of the specimen recorded from the Aegean Sea indicates an association between the species distribution and the circulation of the warm Levantine Intermediate Water. The more frequent observations of moribund spawning females at the periphery of the Cretan Sea are indicative of a spawning ground at this area. The suspected recent increase of O. bartramii abundance in both the northeastern and northwestern basins might be due to the warming of upper sea layers, which has been observed since the mid-1980s and is considered to be the main factor driving the northward expansion of the warm-water species’ range within the Mediterranean Sea.


2017 ◽  
Vol 16 ◽  
pp. 240-248 ◽  
Author(s):  
Stefanos Kalogirou ◽  
Aikaterini Anastasopoulou ◽  
Konstantinos Kapiris ◽  
Christos D. Maravelias ◽  
Mihalis Margaritis ◽  
...  

2021 ◽  
Author(s):  
Giusy Fedele ◽  
Elena Mauri ◽  
Giulio Notarstefano ◽  
Pierre Marie Poulain

Abstract. The Atlantic Water (AW) and Levantine Intermediate Water (LIW) are important water masses that play a crucial role in the internal variability of the Mediterranean thermohaline circulation. In particular, their variability and interaction, along with other water masses that characterize the Mediterranean basin, such as the Western Mediterranean Deep Water (WMDW), contribute to modify the Mediterranean Outflow through the Gibraltar Strait and hence may influence the stability of the global thermohaline circulation. This work aims to characterize the AW and LIW in the Mediterranean Sea, taking advantage of the large observational dataset provided by Argo floats from 2001 to 2019. Using different diagnostics, the AW and LIW were identified, highlighting the inter-basin variability and the strong zonal gradient that characterize the two water masses in this marginal sea. Their temporal variability was also investigated focusing on trends and spectral features which constitute an important starting point to understand the mechanisms that are behind their variability. A clear salinification and warming trend have characterized the AW and LIW in the last two decades (~0.007 and 0.008 yr−1; 0.018 and 0.007 °C yr−1, respectively). The salinity and temperature trends found at subbasin scale are in good agreement with previous results. The strongest trends are found in the Adriatic basin in both the AW and LIW properties. A subbasin dependent spectral variability emerges in the AW and LIW salinity timeseries with peaks between 2 and 10 years.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1509 ◽  
Author(s):  
Kyriakoula Roditi ◽  
Dimitris Vafidis

Small-scale fisheries constitute an important component of coastal human societies. The present study describes the small-scale net fisheries on Kalymnos Island (south-east Aegean Sea) that harbors the largest small-scale fleet in the eastern Mediterranean Sea. In addition, this study aims to evaluate their characteristics and economics. Relevant métiers were identified through a multivariate analysis by inputting the main resources and fishing gear data that were recorded during landings. Four main practices were observed being used as fishing gears, gillnets and trammel nets, targeting the species Mullus barbatus, Boops boops, Mullus surmuletus, Scorpaena porcus, and Sepia officinalis. Further analysis, which incorporated data concerning the type of the gear used, revealed 11 distinct métiers. Most of these métiers are practiced by other Mediterranean small-scale fisheries as well, in terms of target species, gear and seasonality. However, the métier that had its target species as B.boops is not practiced in other Mediterranean small-scale fisheries. The seasonal rotation of métiers was determined by the availability of different species rather than their market price. The results revealed the difference in fishing practice used by the fishermen in the study area compared to other fishing practices in the Mediterranean Sea. In particular, the fishermen of this study area targeted more species (B.boops) with a very low market price. They also provided essential information for the development and implementation of management plans aiming at the sustainability of small-scale fisheries.


2019 ◽  
Vol 49 (7) ◽  
pp. 1699-1721 ◽  
Author(s):  
Nadia Pinardi ◽  
Paola Cessi ◽  
Federica Borile ◽  
Christopher L. P. Wolfe

AbstractThe time-mean zonal and meridional overturning circulations of the entire Mediterranean Sea are studied in both the Eulerian and residual frameworks. The overturning is characterized by cells in the vertical and either zonal or meridional planes with clockwise circulations in the upper water column and counterclockwise circulations in the deep and abyssal regions. The zonal overturning is composed of an upper clockwise cell in the top 600 m of the water column related to the classical Wüst cell and two additional deep clockwise cells, one corresponding to the outflow of the dense Aegean water during the Eastern Mediterranean Transient (EMT) and the other associated with dense water formation in the Rhodes Gyre. The variability of the zonal overturning before, during, and after the EMT is discussed. The meridional basinwide overturning is composed of clockwise, multicentered cells connected with the four northern deep ocean formation areas, located in the Eastern and Western Mediterranean basins. The connection between the Wüst cell and the meridional overturning is visualized through the horizontal velocities vertically integrated across two layers above 600 m. The component of the horizontal velocity associated with the overturning is isolated by computing the divergent components of the vertically integrated velocities forced by the inflow/outflow at the Strait of Gibraltar.


Crustaceana ◽  
2019 ◽  
Vol 92 (11-12) ◽  
pp. 1403-1414
Author(s):  
Ozge Ozgen ◽  
Sermin Acik ◽  
Kerem Bakir

Abstract This paper deals with six crustacean species associated with Posidonia oceanica (Linnaeus) Delile, 1813 meadows along the Aegean coasts of Turkey: Caprella tavolarensis, Eriopisella ruffoi, Iphimedia vicina, Astacilla mediterranea, Apseudopsis minimus and Macropodia deflexa. Apseudopsis minimus is a new record for the Turkish coast of the Aegean Sea, the other five species are new records for the eastern Mediterranean. Brief descriptions of the species and their morphological and ecological characteristics are given.


Sign in / Sign up

Export Citation Format

Share Document