scholarly journals Dynamics of picoplankton community from coastal waters to the open sea in the Central Adriatic

2013 ◽  
Vol 15 (1) ◽  
pp. 179 ◽  
Author(s):  
D. ŠANTIĆ ◽  
S. ŠESTANOVIĆ ◽  
M. ŠOLIĆ ◽  
N. KRSTULOVIĆ ◽  
G. KUŠPILIĆ ◽  
...  

Flow cytometry was used to describe seasonal cycles of Prochlorococcus (Prochl), Synechococcus (Syn), picoeukaryotes and heterotrophic bacteria in the central Adriatic Sea along the trophic gradient from January to December 2010. All picoplankton parameters decreased from eutrophic to oligotrophic areas, while the biomass ratio of bacterial to autotrophic picoplankton showed an increase along the trophic gradient. Bacterial biomass ranged from 5.28 to 21.20 μg C l-1. Increased values were present during warmer seasons with the domination of low nucleic acid (LNA) group of bacteria. The high nucleic acid (HNA) bacterial group dominated during the winter and the spring. Bacterial production ranged from 0.09 -0.45 × 104 cells ml-1 h-1 .At coastal stations increased production was present during the winter and the spring and was more or less uniform at open sea stations. Biomasses of Syn and Prochl ranged from 0.16 to 11.47 µg C-1 l-1 and from 0.01 to 3.08 µg C l-1, respectively. They were elevated during the summer and the autumn at coastal stations and during the late winter at the open sea. Syn biomass always dominated over Prochl participating with 61.6-97.2% in biomass of cyanobacteria. Biomass of picoeukaryotes ranged from 1.21 to 21.85 µg C l-1 and was the highest during the winter. Their biomass notably prevailed in autotrophic picoplankton (APP) biomass over that of picocyanobacteria during the whole year. Autotrophic components (Prochl, Syn and picoeukaryotes) made greater contribution to the picoplankton biomass in mesotrophic and eutrophic areas, while heterotrophic bacteria became more important under oligotrophic conditions.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Anita Manti ◽  
Paola Boi ◽  
Federica Semprucci ◽  
Rosaria Cataudella ◽  
Stefano Papa

Data concerning picoplanktonic community composition and abundance in the Central Adriatic Sea are presented in an effort to improve the knowledge of bacterioplankton and autotrophic picoplankton and their seasonal changes. Flow cytometry analyses revealed the presence of two distinct bacteria populations: HNA and LNA cells. HNA cells showed an explicit correlation with viable and actively respiring cells. The study of viability and activity may increase our knowledge of the part that contributes really to the remineralization and bacterial biomass production. Authotrophic picoplankton abundance, especially picocyanobacteria, was strongly influenced by seasonality, indicating that light availability and water temperature are very important regulating factors. In terms of total carbon biomass, the main contribution came from heterotrophic bacteria with a lower contribution from autotrophic picoplankton. CARD-FISH evidenced, within the Eubacteria domain, the dominance of members of the phyla Alphaproteobacteria, with a strong contribution from SAR11clade, followed by Cytophaga-Flavobacterium and Gammaproteobacteria. The bacterial groups detected contributed differently depending when the sample was taken, suggesting possible seasonal patterns. This study documents for the first time picoplankton community composition in the Central Adriatic Sea using two different approaches, FCM and CARD-FISH, and could provide preliminary data for future studies.


Author(s):  
Lucile Duforêt-Gaurier ◽  
David Dessailly ◽  
William Moutier ◽  
Hubert Loisel

The bulk backscattering ratio ($\tilde{b_{bp}}$) is commonly used as a descriptor of the bulk real refractive index of the particulate assemblage in natural waters. Based on numerical simulations, we analyze the impact of heterogeneity of phytoplankton cells on $\tilde{b_{bp}}$. $\tilde{b_{bp}}$ is modeled considering viruses, heterotrophic bacteria, phytoplankton, detritus, and minerals. Three study cases are defined according to the relative abundance of these different components. Two study cases represent typical situations in open ocean, outside (No-B/No-M) and inside bloom (B/No-M). The third study case is typical of coastal waters with the presence of minerals. Phytoplankton cells are modeled by a two-layered spherical geometry representing a chloroplast surrounding the cytoplasm. The $\tilde{b_{bp}}$ values are higher when heterogeneity is considered because the contribution of coated spheres to backscattering is higher than homogeneous spheres. The impact of heterogeneity is however strongly conditioned by the hyperbolic slope $\xi$ of the particle size distribution. Even if the relative concentration of phytoplankton is small (<1%), $\tilde{b_{bp}}$ increases by about 60% (for $\xi=4.3$ and for the No-B/No-M water body), when the heterogeneity is taken into account, in comparison with a particulate population only composed by homogeneous spheres. As expected, heterogeneity has a much smaller impact (about 5$\%$ for $\xi=4.3$) on $\tilde{b_{bp}}$ when minerals are added.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marion Urvoy ◽  
Raphaël Lami ◽  
Catherine Dreanno ◽  
Daniel Delmas ◽  
Stéphane L’Helguen ◽  
...  

Heterotrophic microbial communities play a central role in biogeochemical cycles in the ocean by degrading organic matter through the synthesis of extracellular hydrolytic enzymes. Their hydrolysis rates result from the community’s genomic potential and the differential expression of this genomic potential. Cell-cell communication pathways such as quorum sensing (QS) could impact both aspects and, consequently, structure marine ecosystem functioning. However, the role of QS communications in complex natural assemblages remains largely unknown. In this study, we investigated whether N-acylhomoserine lactones (AHLs), a type of QS signal, could regulate both hydrolytic activities and the bacterial community composition (BCC) of marine planktonic assemblages. To this extent, we carried out two microcosm experiments, adding five different AHLs to bacterial communities sampled in coastal waters (during early and peak bloom) and monitoring their impact on enzymatic activities and diversity over 48 h. Several specific enzymatic activities were impacted during both experiments, as early as 6 h after the AHL amendments. The BCC was also significantly impacted by the treatments after 48 h, and correlated with the expression of the hydrolytic activities, suggesting that changes in hydrolytic intensities may drive changes in BCC. Overall, our results suggest that QS communication could participate in structuring both the function and diversity of marine bacterial communities.


2002 ◽  
Vol 45 (4) ◽  
pp. 491-498 ◽  
Author(s):  
Lohengrin Dias de Almeida Fernandes ◽  
Sérgio Luiz Costa Bonecker ◽  
Jean Louis Valentin

In the present study, we observed seasonal variations in the density of decapod larvae as well as changes in density related to diurnal and tidal cycles. Among the decapod larvae collected, portunids and grapsids were the most abundant, especially during nocturnal ebb tides and near the surface. The same results were obtained in late winter (September) and late summer (March). These results demonstrated a flow of decapod larvae from Guanabara Bay to adjacent coastal waters. Luciferid (Lucifer faxoni) was the only group with high densities during flood tides and we suggest this is an evidence of L. faxoni larvae entering Guanabara Bay in late winter. Probably these changes in distribution of Lucifer faxoni among winter and summer were related to reproductive cycle in the bay. For the portunids, grapsids and ocypodids, a similar dispersion strategy was observed towards adjacent coastal waters in the surface during nocturnal ebb tides.


Chemosphere ◽  
2021 ◽  
Vol 263 ◽  
pp. 128090
Author(s):  
Martina Capriotti ◽  
Paolo Cocci ◽  
Luca Bracchetti ◽  
Erika Cottone ◽  
Rosaria Scandiffio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document