scholarly journals A new modified Lehmann type – II G class of distributions: exponential distribution with theory, simulation, and applications to engineering sector

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 483
Author(s):  
Oluwafemi Samson Balogun ◽  
Muhammad Zeshan Arshad ◽  
Muhammad Zafar Iqbal ◽  
Madiha Ghamkhar

Background: Modeling against non-normal data a challenge for theoretical and applied scientists to choose a lifetime model and expect to perform optimally against experimental, reliability engineering, hydrology, ecology, and agriculture sciences, phenomena. Method: We have introduced a new G class that generates relatively more flexible models to its baseline and we refer to it as the new modified Lehmann Type – II (ML–II) G class of distributions. A list of new members of ML–II-G class is developed and as a sub-model the exponential distribution, known as the ML-II-Exp distribution is considered for further discussion. Several mathematical and reliability characters along with explicit expressions for moments, quantile function, and order statistics are derived and discussed in detail. Furthermore, plots of density and hazard rate functions are sketched out over the certain choices of the parametric values. For the estimation of the model parameters, we utilized the method of maximum likelihood estimation. Results: The applicability of the ML–II–G class is evaluated via ML–II–Exp distribution. ML–II–Exp distribution is modeled to four suitable lifetime datasets and the results are compared with the well-known competing models. Some well recognized goodness–of–fit including -Log-likelihood (-LL), Anderson-Darling (A*), Cramer-Von Mises (W*), and Kolmogorov-Smirnov (K-S) test statistics are considered for the selection of a better fit model. Conclusion: The minimum value of the goodness–of–fit is the criteria of a better fit model that the ML–II–Exp distribution perfectly satisfies. Hence, we affirm that the ML–II–Exp distribution is a better fit model than its competitors.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 823
Author(s):  
Muhammad Zafar Iqbal ◽  
Muhammad Zeshan Arshad ◽  
Gamze Özel ◽  
Oluwafemi Samson Balogun

Background: Modeling with the complex random phenomena that are frequently observed in reliability engineering, hydrology, ecology, medical science, and agricultural sciences was once thought to be an enigma. Scientists and practitioners agree that an appropriate but simple model is the best choice for this investigation. To address these issues, scientists have previously discussed a variety of bounded and unbounded, simple to complex lifetime models. Methods: We discussed a modified Lehmann type II (ML-II) model as a better approach to modeling bathtub-shaped and asymmetric random phenomena. A number of complementary mathematical and reliability measures were developed and discussed. Furthermore, explicit expressions for the moments, quantile function, and order statistics were developed. Then, we discussed the various shapes of the density and reliability functions over various model parameter choices. The maximum likelihood estimation (MLE) method was used to estimate the unknown model parameters, and a simulation study was carried out to evaluate the MLEs' asymptotic behavior. Results: We demonstrated ML- II's dominance over well-known competitors by modeling anxiety in women and electronic data.


Author(s):  
Arun Kumar Chaudhary ◽  
Vijay Kumar

In this study, we have introduced a three-parameter probabilistic model established from type I half logistic-Generating family called half logistic modified exponential distribution. The mathematical and statistical properties of this distribution are also explored. The behavior of probability density, hazard rate, and quantile functions are investigated. The model parameters are estimated using the three well known estimation methods namely maximum likelihood estimation (MLE), least-square estimation (LSE) and Cramer-Von-Mises estimation (CVME) methods. Further, we have taken a real data set and verified that the presented model is quite useful and more flexible for dealing with a real data set. KEYWORDS— Half-logistic distribution, Estimation, CVME ,LSE, , MLE


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 135 ◽  
Author(s):  
Ahmed Z. Afify ◽  
Osama Abdo Mohamed

In this paper, we study a new flexible three-parameter exponential distribution called the extended odd Weibull exponential distribution, which can have constant, decreasing, increasing, bathtub, upside-down bathtub and reversed-J shaped hazard rates, and right-skewed, left-skewed, symmetrical, and reversed-J shaped densities. Some mathematical properties of the proposed distribution are derived. The model parameters are estimated via eight frequentist estimation methods called, the maximum likelihood estimators, least squares and weighted least-squares estimators, maximum product of spacing estimators, Cramér-von Mises estimators, percentiles estimators, and Anderson-Darling and right-tail Anderson-Darling estimators. Extensive simulations are conducted to compare the performance of these estimation methods for small and large samples. Four practical data sets from the fields of medicine, engineering, and reliability are analyzed, proving the usefulness and flexibility of the proposed distribution.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1684 ◽  
Author(s):  
Maha A. D. Aldahlan ◽  
Ahmed Z. Afify

In this paper, we studied the problem of estimating the odd exponentiated half-logistic exponential (OEHLE) parameters using several frequentist estimation methods. Parameter estimation provides a guideline for choosing the best method of estimation for the model parameters, which would be very important for reliability engineers and applied statisticians. We considered eight estimation methods, called maximum likelihood, maximum product of spacing, least squares, Cramér–von Mises, weighted least squares, percentiles, Anderson–Darling, and right-tail Anderson–Darling for estimating its parameters. The finite sample properties of the parameter estimates are discussed using Monte Carlo simulations. In order to obtain the ordering performance of these estimators, we considered the partial and overall ranks of different estimation methods for all parameter combinations. The results illustrate that all classical estimators perform very well and their performance ordering, based on overall ranks, from best to worst, is the maximum product of spacing, maximum likelihood, Anderson–Darling, percentiles, weighted least squares, least squares, right-tail Anderson–Darling, and Cramér–von-Mises estimators for all the studied cases. Finally, the practical importance of the OEHLE model was illustrated by analysing a real data set, proving that the OEHLE distribution can perform better than some well known existing extensions of the exponential distribution.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2060
Author(s):  
Mashail M. AL Sobhi

The present paper proposes a new distribution called the inverse power logistic exponential distribution that extends the inverse Weibull, inverse logistic exponential, inverse Rayleigh, and inverse exponential distributions. The proposed model accommodates symmetrical, right-skewed, left-skewed, reversed-J-shaped, and J-shaped densities and increasing, unimodal, decreasing, reversed-J-shaped, and J-shaped hazard rates. We derive some mathematical properties of the proposed model. The model parameters were estimated using five estimation methods including the maximum likelihood, Anderson–Darling, least-squares, Cramér–von Mises, and weighted least-squares estimation methods. The performance of these estimation methods was assessed by a detailed simulation study. Furthermore, the flexibility of the introduced model was studied using an insurance real dataset, showing that the proposed model can be used to fit the insurance data as compared with twelve competing models.


2003 ◽  
Vol 33 (2) ◽  
pp. 365-381 ◽  
Author(s):  
Vytaras Brazauskas ◽  
Robert Serfling

Several recent papers treated robust and efficient estimation of tail index parameters for (equivalent) Pareto and truncated exponential models, for large and small samples. New robust estimators of “generalized median” (GM) and “trimmed mean” (T) type were introduced and shown to provide more favorable trade-offs between efficiency and robustness than several well-established estimators, including those corresponding to methods of maximum likelihood, quantiles, and percentile matching. Here we investigate performance of the above mentioned estimators on real data and establish — via the use of goodness-of-fit measures — that favorable theoretical properties of the GM and T type estimators translate into an excellent practical performance. Further, we arrive at guidelines for Pareto model diagnostics, testing, and selection of particular robust estimators in practice. Model fits provided by the estimators are ranked and compared on the basis of Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling statistics.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246935
Author(s):  
Fiaz Ahmad Bhatti ◽  
G. G. Hamedani ◽  
Mustafa Ç. Korkmaz ◽  
Wenhui Sheng ◽  
Azeem Ali

In this study, a new flexible lifetime model called Burr XII moment exponential (BXII-ME) distribution is introduced. We derive some of its mathematical properties including the ordinary moments, conditional moments, reliability measures and characterizations. We employ different estimation methods such as the maximum likelihood, maximum product spacings, least squares, weighted least squares, Cramer-von Mises and Anderson-Darling methods for estimating the model parameters. We perform simulation studies on the basis of the graphical results to see the performance of the above estimators of the BXII-ME distribution. We verify the potentiality of the BXII-ME model via monthly actual taxes revenue and fatigue life applications.


Author(s):  
Bassa Shiwaye Yakura ◽  
Ahmed Askira Sule ◽  
Mustapha Mohammed Dewu ◽  
Kabiru Ahmed Manju ◽  
Fadimatu Bawuro Mohammed

This article uses the odd Lomax-G family of distributions to study a new extension of the Kumaraswamy distribution called “odd Lomax-Kumaraswamy distribution”. In this article, the density and distribution functions of the odd Lomax-Kumaraswamy distribution are defined and studied with many other properties of the distribution such as the ordinary moments, moment generating function, characteristic function, quantile function, reliability functions, order statistics and other useful measures. The model parameters are estimated by the method of maximum likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real data sets.


Author(s):  
Naz Saud ◽  
Sohail Chand

A class of goodness of fit tests for Marshal-Olkin Extended Rayleigh distribution with estimated parameters is proposed. The tests are based on the empirical distribution function. For determination of asymptotic percentage points, Kolomogorov-Sminrov, Cramer-von-Mises, Anderson-Darling,Watson, and Liao-Shimokawa test statistic are used. This article uses Monte Carlo simulations to obtain asymptotic percentage points for Marshal-Olkin extended Rayleigh distribution. Moreover, power of the goodness of fit test statistics is investigated for this lifetime model against several alternatives.


Sign in / Sign up

Export Citation Format

Share Document