scholarly journals Advances in understanding and managing atopic dermatitis

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 1296 ◽  
Author(s):  
Michael Barton ◽  
Robert Sidbury

Atopic dermatitis is a chronic, pruritic skin disease characterized by an improperly functioning skin barrier and immune dysregulation. We review proposed atopic dermatitis pathomechanisms, emphasizing how these impact current perspectives on natural history, role of allergic sensitization, and future therapeutic targets.

2021 ◽  
Vol 22 (13) ◽  
pp. 7227
Author(s):  
Lai-San Wong ◽  
Yu-Ta Yen ◽  
Chih-Hung Lee

Atopic dermatitis (AD) is a prototypic inflammatory disease that presents with intense itching. The pathophysiology of AD is multifactorial, involving environmental factors, genetic susceptibility, skin barrier function, and immune responses. A recent understanding of pruritus transmission provides more information about the role of pruritogens in the pathogenesis of AD. There is evidence that pruritogens are not only responsible for eliciting pruritus, but also interact with immune cells and act as inflammatory mediators, which exacerbate the severity of AD. In this review, we discuss the interaction between pruritogens and inflammatory molecules and summarize the targeted therapies for AD.


Toxins ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 321 ◽  
Author(s):  
Fabio Seiti Yamada Yoshikawa ◽  
Josenilson Feitosa de Lima ◽  
Maria Notomi Sato ◽  
Yasmin Álefe Leuzzi Ramos ◽  
Valeria Aoki ◽  
...  

Atopic dermatitis (AD) is a chronic and inflammatory skin disease with intense pruritus and xerosis. AD pathogenesis is multifactorial, involving genetic, environmental, and immunological factors, including the participation of Staphylococcus aureus. This bacterium colonizes up to 30–100% of AD skin and its virulence factors are responsible for its pathogenicity and antimicrobial survival. This is a concise review of S. aureus superantigen-activated signaling pathways, highlighting their involvement in AD pathogenesis, with an emphasis on skin barrier disruption, innate and adaptive immunity dysfunction, and microbiome alterations. A better understanding of the combined mechanisms of AD pathogenesis may enhance the development of future targeted therapies for this complex disease.


2020 ◽  
Vol 21 (8) ◽  
pp. 2867 ◽  
Author(s):  
Gabsik Yang ◽  
Jin Kyung Seok ◽  
Han Chang Kang ◽  
Yong-Yeon Cho ◽  
Hye Suk Lee ◽  
...  

Atopic dermatitis (AD) is a common and relapsing skin disease that is characterized by skin barrier dysfunction, inflammation, and chronic pruritus. While AD was previously thought to occur primarily in children, increasing evidence suggests that AD is more common in adults than previously assumed. Accumulating evidence from experimental, genetic, and clinical studies indicates that AD expression is a precondition for the later development of other atopic diseases, such as asthma, food allergies, and allergic rhinitis. Although the exact mechanisms of the disease pathogenesis remain unclear, it is evident that both cutaneous barrier dysfunction and immune dysregulation are critical etiologies of AD pathology. This review explores recent findings on AD and the possible underlying mechanisms involved in its pathogenesis, which is characterized by dysregulation of immunological and skin barrier integrity and function, supporting the idea that AD is a systemic disease. These findings provide further insights for therapeutic developments aiming to repair the skin barrier and decrease inflammation.


Medicina ◽  
2019 ◽  
Vol 55 (8) ◽  
pp. 460 ◽  
Author(s):  
Arianna Giannetti ◽  
Francesca Cipriani ◽  
Valentina Indio ◽  
Marcella Gallucci ◽  
Carlo Caffarelli ◽  
...  

Background and Objectives: Cow’s milk protein allergy (CMA) is the most common allergy in children. The natural history of CMA is generally favorable and the majority of children reach tolerance during childhood, even if studies show variable results. Atopic dermatitis (AD) is a complex disease from an immunological point of view. It is characterized by an impaired skin barrier function and is often the first clinical manifestation of the so-called “atopic march”. The aim of our study is to evaluate, in a cohort of children with CMA, if the presence of AD in the first months of life can influence the atopic status of patients, the tolerance acquisition to cow’s milk, the level of specific IgE (sIgE), and the sensitization towards food and/or inhalant allergens. Materials and Methods: We enrolled 100 children with a diagnosis of CMA referred to our Pediatric Allergology Unit, aged 1–24 months at the time of the first visit. Results: 71 children had AD and 29 did not. The mean follow-up was 5.28 years. The CMA manifestations were mainly cutaneous, especially in children with AD (91.6% vs. 51.7%; P < 0.001). Patients with AD showed higher rates of polysensitization to foods and higher levels of both total IgE and sIgE for milk, casein, wheat, peanuts, and cat dander at different ages when compared to patients without AD. We analyzed the presence of IgE sensitization for the main foods and inhalants at various ages in the two groups of patients: a statistically significant difference emerged in the two groups of patients for milk, yolk and egg white, hazelnut, peanuts, soybean, grass pollen and cat dander. Meanwhile, we did not find significant differences in terms of tolerance acquisition toward cow’s milk, which was nonetheless reached around 5 years of age in 61% of patients. The level of cow’s milk sIgE at the age of 5 years was significantly higher in the group of patients who did not acquire tolerance (38.38 vs. 5.22 kU/L; P < 0.0001). Conclusions: An early barrier deficiency appears to promote the development of allergic sensitization, but does not seem to influence the acquisition of tolerance.


2018 ◽  
Vol 138 (5) ◽  
pp. S115
Author(s):  
M. Ota ◽  
T. Sasaki ◽  
T. Ebihara ◽  
S. Murata ◽  
S. Kaneko ◽  
...  

2021 ◽  
Author(s):  
◽  
Karmella Naidoo

<p>Atopic dermatitis (AD) is a highly debilitating disease with significant health impacts worldwide. It is a chronic and relapsing inflammatory skin disease which often poses a life-long burden for the affected individuals. AD has been a difficult disease to treat as it manifests with a wide spectrum of clinical phenotypes and the current clinical management strategies are non-specific. Therefore, it is imperative to identify specific immunological pathways that could be targeted to treat this disease. Previous studies have documented that AD disease progression is precipitated by a combination of skin barrier dysfunction, itch and immune dysregulation that are responsible for AD progression. However, the precise role of effector cells and cytokines have not been fully elucidated. To address this, I established a clinically relevant model of AD, using the vitamin D analogue, MC903. This MC903 model closely resembles the AD phenotype in patients, including inflammatory parameters, barrier dysfunction, itch, and histopathological characteristics, providing a novel platform to evaluate targets for the treatment and prevention of AD. Furthermore, this model exposed the cells and cytokines that are critically associated with disease severity, including eosinophils, mast cells, TSLP, IL-4 and IL-9, but not CD4+ T cells. The instrumental role of these effector cells and cytokines was established by their stepwise depletion or blockade. Indeed, functional eosinophil depletion via the use of inducible eosinophil (iPHIL) mice significantly ameliorated AD pathology, most notably itch. Similar results were obtained after blockade of the IL-4/IL-13 axis by genetic deletion of STAT6. The clinically more relevant use of soluble inhibitors targeting IL-9 and CRTh2 (in a prophylactic and therapeutic setting, respectively), both resulted in a substantial reduction in AD phenotype. In summary, this body of work led to the identification of key disease-initiating and effector cells and molecules that represent attractive targets for the treatment of AD.</p>


Sign in / Sign up

Export Citation Format

Share Document