scholarly journals Whole genome sequencing of two human rhinovirus A types (A101 and A15) detected in Kenya, 2016-2018

2021 ◽  
Vol 6 ◽  
pp. 178
Author(s):  
Martha M. Luka ◽  
Everlyn Kamau ◽  
Zaydah R. de Laurent ◽  
John Mwita Morobe ◽  
Leonard K. Alii ◽  
...  

Background: Virus genome sequencing is increasingly utilized in epidemiological surveillance. Genomic data allows comprehensive evaluation of underlying viral diversity and epidemiology to inform control. For human rhinovirus (HRV), genomic amplification and sequencing is challenging due to numerous types, high genetic diversity and inadequate reference sequences. Methods: We developed a tiled amplicon type-specific protocol for genome amplification and sequencing on the Illumina MiSeq platform of two HRV types, A15 and A101. We then assessed added value in analyzing whole genomes relative to the VP4/2 region only in the investigation of HRV molecular epidemiology within the community in Kilifi, coastal Kenya. Results: We processed 73 nasopharyngeal swabs collected between 2016-2018, and 48 yielded at least 70% HRV genome coverage. These included all A101 samples (n=10) and 38 (60.3%) A15 samples.  Phylogenetic analysis revealed that the Kilifi A101 sequences interspersed with global A101 genomes available in GenBank collected between 1999-2016. On the other hand, our A15 sequences formed a monophyletic group separate from the global genomes collected in 2008 and 2019. An improved phylogenetic resolution was observed with the genome phylogenies compared to the VP4/2 phylogenies. Conclusions: We present a type-specific full genome sequencing approach for obtaining HRV genomic data and characterizing infections.

2021 ◽  
Vol 6 ◽  
pp. 178
Author(s):  
Martha M. Luka ◽  
Everlyn Kamau ◽  
Zaydah R. de Laurent ◽  
John Mwita Morobe ◽  
Leonard K. Alii ◽  
...  

Background: Virus genome sequencing is increasingly utilized in epidemiological surveillance. Genomic data allows comprehensive evaluation of underlying viral diversity and epidemiology to inform control. For human rhinovirus (HRV), genomic amplification and sequencing is challenging due to numerous types, high genetic diversity and inadequate reference sequences. Methods: We developed a tiled amplicon type-specific protocol for genome amplification and sequencing on the Illumina MiSeq platform of two HRV types, A15 and A101. We then assessed added value in analyzing whole genomes relative to the VP4/2 region only in the investigation of HRV molecular epidemiology within the community in Kilifi, coastal Kenya. Results: We processed 73 samples collected between 2016-2018, and 48 yielded at least 70% HRV genome coverage. These included all A101 samples (n=10) and 38 (60.3%) A15 samples.  Phylogenetic analysis revealed that the Kilifi A101 sequences interspersed with global A101 genomes available in GenBank collected between 1999-2016. On the other hand, our A15 sequences formed a monophyletic group separate from the global genomes collected in 2008 and 2019. Improved phylogenetic resolution was observed with the genome phylogenies compared to the VP4/2 phylogenies. Conclusions: We present a type-specific full genome sequencing approach for obtaining HRV genomic data and characterizing infections.


2018 ◽  
Author(s):  
Avika Dixit ◽  
Luca Freschi ◽  
Roger Vargas ◽  
Roger Calderon ◽  
James Sacchettini ◽  
...  

AbstractBackgroundWhole genome sequencing (WGS) can elucidate Mycobacterium tuberculosis (Mtb) transmission patterns but more data is needed to guide its use in high-burden settings. In a household-based transmissibility study of 4,000 TB patients in Lima, Peru, we identified a large MIRU-VNTR Mtb cluster with a range of resistance phenotypes and studied host and bacterial factors contributing to its spread.MethodsWGS was performed on 61 of 148 isolates in the cluster. We compared transmission link inference using epidemiological or genomic data with and without the inclusion of controversial variants, and estimated the dates of emergence of the cluster and antimicrobial drug resistance acquisition events by generating a time-calibrated phylogeny. We validated our findings in genomic data from an outbreak of 325 TB cases in London. Using a larger set of 12,032 public Mtb genomes, we determined bacterial factors characterizing this cluster and under positive selection in other Mtb lineages.FindingsFour isolates were distantly related and the remaining 57 isolates diverged ca. 1968 (95% HPD: 1945-1985). Isoniazid resistance arose once, whereas rifampicin resistance emerged subsequently at least three times. Amplification of other drug resistance occurred as recently as within the last year of sampling. High quality PE/PPE variants and indels added information for transmission inference. We identified five cluster-defining SNPs, including esxV S23L to be potentially contributing to transmissibility.InterpretationClusters defined by MIRU-VNTR typing, could be circulating for decades in a high-burden setting. WGS allows for an improved understanding of transmission, as well as bacterial resistance and fitness factors.FundingThe study was funded by the National Institutes of Health (Peru Epi study U19-AI076217 and K01-ES026835 to MRF). The funding sources had no role in any aspect of the study, manuscript or decision to submit it for publication.Research in contextEvidence before this studyUse of whole genome sequencing (WGS) to study tuberculosis (TB) transmission has proven to have higher resolution that traditional typing methods in low-burden settings. The implications of its use in high-burden settings are not well understood.Added value of this studyUsing WGS, we found that TB clusters defined by traditional typing methods may be circulating for several decades. Genomic regions typically excluded from WGS analysis contain large amount of genetic variation that may affect interpretation of transmission events. We also identified five bacterial mutations that may contribute to transmission fitness.Implications of all the available evidenceAdded value of WGS for understanding TB transmission may be even higher in high-burden vs. low-burden settings. Methods integrating variants found in polymorphic sites and insertions and deletions are likely to have higher resolution. Several host and bacterial factors may be responsible for higher transmissibility that can be targets of intervention to interrupt TB transmission in communities.


2015 ◽  
Vol 53 (7) ◽  
pp. 2049-2059 ◽  
Author(s):  
Charlotte Hedskog ◽  
Krishna Chodavarapu ◽  
Karin S. Ku ◽  
Simin Xu ◽  
Ross Martin ◽  
...  

Hepatitis C virus (HCV) exhibits a high genetic diversity and is classified into 6 genotypes, which are further divided into 66 subtypes. Current sequencing strategies require prior knowledge of the HCV genotype and subtype for efficient amplification, making it difficult to sequence samples with a rare or unknown genotype and/or subtype. Here, we describe a subtype-independent full-genome sequencing assay based on a random amplification strategy coupled with next-generation sequencing. HCV genomes from 17 patient samples with both common subtypes (1a, 1b, 2a, 2b, and 3a) and rare subtypes (2c, 2j, 3i, 4a, 4d, 5a, 6a, 6e, and 6j) were successfully sequenced. On average, 3.7 million reads were generated per sample, with 15% showing HCV specificity. The assembled consensus sequences covered 99.3% to 100% of the HCV coding region, and the average coverage was 6,070 reads/position. The accuracy of the generated consensus sequence was estimated to be >99% based on results fromin vitroHCV replicon amplification, with the same extrapolated amount of input RNA molecules as that for the patient samples. Taken together, the HCV genomes from 17 patient samples were successfully sequenced, including samples with subtypes that have limited sequence information. This method has the potential to sequence any HCV patient sample, independent of genotype or subtype. It may be especially useful in confounding cases, like those with rare subtypes, intergenotypic recombination, or multiple genotype infections, and may allow greater insight into HCV evolution, its genetic diversity, and drug resistance development.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 196
Author(s):  
Beverly Egyir ◽  
Jeannette Bentum ◽  
Naiki Attram ◽  
Anne Fox ◽  
Noah Obeng-Nkrumah ◽  
...  

Staphylococcus aureus (S. aureus) is a common cause of surgical site infections (SSIs) globally. Data on the occurrence of methicillin-susceptible S. aureus (MSSA) as well as methicillin-resistant S. aureus (MRSA) among patients with surgical site infections (SSIs) in sub-Saharan African are scarce. We characterized S. aureus from SSIs in Ghana using molecular methods and antimicrobial susceptibility testing (AST). Wound swabs or aspirate samples were collected from subjects with SSIs. S. aureus was identified by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF-MS); AST was performed by Kirby-Bauer disk diffusion, and results were interpreted according to the Clinical and Laboratory Standards Institute (CLSI) guideline. Detection of spa, mecA, and pvl genes was performed by polymerase chain reaction (PCR). Whole-genome sequencing (WGS) was done using the Illumina MiSeq platform. Samples were collected from 112 subjects, with 13 S. aureus isolates recovered. Of these, 92% were sensitive to co-trimoxazole, 77% to clindamycin, and 54% to erythromycin. Multi-drug resistance was detected in 5 (38%) isolates. The four mecA gene-positive MRSA isolates detected belonged to ST152 (n = 3) and ST5 (n = 1). In total, 62% of the isolates were positive for the Panton-Valentine leukocidin (pvl) toxin gene. This study reports, for the first time, a pvl-positive ST152-t355 MRSA clone from SSIs in Ghana. The occurrence of multi-drug-resistant S. aureus epidemic clones suggests that continuous surveillance is required to monitor the spread and resistance trends of S. aureus in hospital settings in the country.


2020 ◽  
Vol 41 (S1) ◽  
pp. s434-s434
Author(s):  
Grant Vestal ◽  
Steven Bruzek ◽  
Amanda Lasher ◽  
Amorce Lima ◽  
Suzane Silbert

Background: Hospital-acquired infections pose a significant threat to patient health. Laboratories are starting to consider whole-genome sequencing (WGS) as a molecular method for outbreak detection and epidemiological surveillance. The objective of this study was to assess the use of the iSeq100 platform (Illumina, San Diego, CA) for accurate sequencing and WGS-based outbreak detection using the bioMérieux EPISEQ CS, a novel cloud-based software for sequence assembly and data analysis. Methods: In total, 25 isolates, including 19 MRSA isolates and 6 ATCC strains were evaluated in this study: A. baumannii ATCC 19606, B. cepacia ATCC 25416, E. faecalis ATCC 29212, E. coli ATCC 25922, P. aeruginosa ATCC 27853 and S. aureus ATCC 25923. DNA extraction of all isolates was performed on the QIAcube (Qiagen, Hilden, Germany) using the DNEasy Ultra Clean Microbial kit extraction protocol. DNA libraries were prepared for WGS using the Nextera DNA Flex Library Prep Kit (Illumina) and sequenced at 2×150-bp on the iSeq100 according to the manufacturer’s instructions. The 19 MRSA isolates were previously characterized by the DiversiLab system (bioMérieux, France). Upon validation of the iSeq100 platform, a new outbreak analysis was performed using WGS analysis using EPISEQ CS. ATCC sequences were compared to assembled reference genomes from the NCBI GenBank to assess the accuracy of the iSeq100 platform. The FASTQ files were aligned via BowTie2 version 2.2.6 software, using default parameters, and FreeBayes version 1.1.0.46-0 was used to call homozygous single-nucleotide polymorphisms (SNPs) with a minimum coverage of 5 and an allele frequency of 0.87 using default parameters. ATCC sequences were analyzed using ResFinder version 3.2 and were compared in silico to the reference genome. Results: EPISEQ CS classified 8 MRSA isolates as unrelated and grouped 11 isolates into 2 separate clusters: cluster A (5 isolates) and cluster B (6 isolates) with similarity scores of ≥99.63% and ≥99.50%, respectively. This finding contrasted with the previous characterization by DiversiLab, which identified 3 clusters of 2, 8, and 11 isolates, respectively. The EPISEQ CS resistome data detected the mecA gene in 18 of 19 MRSA isolates. Comparative analysis of the ATCCsequences to the reference genomes showed 99.9986% concordance of SNPs and 100.00% concordance between the resistance genes present. Conclusions: The iSeq100 platform accurately sequenced the bacterial isolates and could be an affordable alternative in conjunction with EPISEQ CS for epidemiological surveillance analysis and infection prevention.Funding: NoneDisclosures: None


2006 ◽  
Vol 44 ◽  
pp. S176-S177
Author(s):  
J.J.Y. Sung ◽  
S.K.W. Tsui ◽  
C.H. Tse ◽  
E.Y.T. Ng ◽  
K.S. Leung ◽  
...  

2021 ◽  
pp. 1-12
Author(s):  
Holly Etchegary ◽  
Daryl Pullman ◽  
Charlene Simmonds ◽  
Zoha Rabie ◽  
Proton Rahman

<b><i>Introduction:</i></b> The growth of global sequencing initiatives and commercial genomic test offerings suggests the public will increasingly be confronted with decisions about sequencing. Understanding public attitudes can assist efforts to integrate sequencing into care and inform the development of public education and outreach strategies. <b><i>Methods:</i></b> A 48-item online survey was advertised on Facebook in Eastern Canada and hosted on SurveyMonkey in late 2018. The survey measured public interest in whole genome sequencing and attitudes toward various aspects of sequencing using vignettes, scaled, and open-ended items. <b><i>Results:</i></b> While interest in sequencing was high, critical attitudes were observed. In particular, items measuring features of patient control and choice regarding genomic data were strongly endorsed by respondents. Majority wanted to specify upfront how their data could be used, retain the ability to withdraw their sample at a later date, sign a written consent form, and speak to a genetic counselor prior to sequencing. Concerns about privacy and unauthorized access to data were frequently observed. Education level was the sociodemographic variable most often related to attitude statements such that those with higher levels of education generally displayed more critical attitudes. <b><i>Conclusions:</i></b> Attitudes identified here could be used to inform the development of implementation strategies for genomic medicine. Findings suggest health systems must address patient concerns about privacy, consent practices, and the strong desire to control what happens to their genomic data through public outreach and education. Specific oversight procedures and policies that are clearly communicated to the public will be required.


2022 ◽  
Author(s):  
jason.nguyen not provided ◽  
Tracy Lee ◽  
Rebecca Hickman ◽  
Natalie Prystajecky ◽  
John Tyson

This procedure provides instructions for how to generate amplicons across the entire SARS-CoV-2 genome to be used for downstream whole genome sequencing applications, including Illumina MiSeq/NextSeq or Oxford Nanopore MinION sequencing platforms. The steps involved in this protocol were derived from version 3 of Freed et al protocol nCoV-2019 sequencing protocol (RAPID barcoding, 1200bp amplicon)V.3 available at https://dx.doi.org/10.17504/protocols.io.bgggjttw


2018 ◽  
Vol 7 (6) ◽  
Author(s):  
Marcela Carina Audisio ◽  
Leonardo Albarracín ◽  
Maria Julia Torres ◽  
Lucila Saavedra ◽  
Elvira Maria Hebert ◽  
...  

This report describes the draft genome sequences of Lactobacillus salivarius A3iob and Lactobacillus johnsonii CRL1647, probiotic strains isolated from the gut of honeybee Apis mellifera workers. The reads were generated by a whole-genome sequencing (WGS) strategy on an Illumina MiSeq sequencer and were assembled into contigs with total sizes of 2,054,490 and 2,137,413 bp for the A3iob and CRL1647 strains, respectively.


Sign in / Sign up

Export Citation Format

Share Document