scholarly journals Analytical Study of Power Generation by Photovoltaic System for Al-Riyadh and Al-Jubail Regions in Saudi Arabia

2021 ◽  
Vol 9 (1) ◽  
pp. 45-55
Author(s):  
Ghormallah S. Alzahrani ◽  
Ahmed M. Nahhas
Author(s):  
Ashraf Balabel ◽  
Nagy I. Elkalashy ◽  
Mohammed A. Abdel-Hakeem ◽  
Usama Hamed Issa

The healthcare facilities sector is an energy-intensive organization especially at a time of spreading dangerous infectious viruses, such as new Coronavirus, or what is known as COVID-19. Recently, many countries have opened several mobile field quarantine hospitals provided with the required technical equipment to prevent the COVID-19 outbreak in these countries. Unfortunately, most of these healthcare camps are lacking in the application of the necessary sustainability principles and health standards to become green healthcare facilities. Solar energy can be used for various purposes in green healthcare facilities, such as power generation and other sterilized applications. Therefore, in the present paper, a new design for the mobile, quick built, and solar-powered green healthcare camp, in safe and effective 24 hours a day services, is introduced. The proposed green healthcare camp is built using modern building technologies for rapid constructions, in which the building design is proposed to incorporate the photovoltaic power generation consideration. Photovoltaic systems are designed according to the loads required for the operation of the designed model of the green healthcare camp. Moreover, the total cost of a solar-powered green healthcare camp is estimated according to local conditions and standards in Saudi Arabia. The practical recommendations are presented with the designed photovoltaic system to attain the overcurrent and overvoltage protection. The photovoltaic designed system is proposed under the condition of ascertaining the service continuity of the photovoltaic power system during the electric faults in the photovoltaic strings. This is achieved by incorporating series diodes at the terminals of each photovoltaic string. The performance of a 50-kW PV system simulated using Matlab/Simulink is evaluated for the fault disturbance to enhance the service continuity.


2021 ◽  
Vol 11 (2) ◽  
pp. 542
Author(s):  
Jaqueline Litardo ◽  
Massimo Palme ◽  
Rubén Hidalgo-León ◽  
Fernando Amoroso ◽  
Guillermo Soriano

This paper compares the potential for building energy saving of various passive and active strategies and on-site power generation through a grid-connected solar photovoltaic system (SPVS). The case study is a student welfare unit from a university campus located in the tropical climate (Aw) of Guayaquil, Ecuador. The proposed approach aims to identify the most effective energy saving strategy for building retrofit in this climate. For this purpose, we modeled the base line of the building and proposed energy saving scenarios that were evaluated independently. All building simulations were done in OpenStudio-EnergyPlus, while the on-site power generation was carried out using the Homer PRO software. Results indicated that the incorporation of daylighting controls accounted for the highest energy savings of around 20% and 14% in total building energy consumption, and cooling loads, respectively. Also, this strategy provided a reduction of about 35% and 43% in total building energy consumption, and cooling loads, respectively, when combined with triple low-e coating glazing and active measures. On the other hand, the total annual electric energy delivered by the SPVS (output power converter) was 66,590 kWh, from where 48,497 kWh was supplied to the building while the remaining electricity was injected into the grid.


Sign in / Sign up

Export Citation Format

Share Document