Leaf anatomical adaptation of some spontaneous species of the Sahara (El Oued region, Algeria)

2012 ◽  
pp. 278-284
Author(s):  
R. Maiti ◽  
P. Satya ◽  
D. Rajkumar ◽  
A. Ramaswamy

2019 ◽  
Vol 29 (3) ◽  
pp. 274-283 ◽  
Author(s):  
James Kavanaugh ◽  
Geoffrey Hugo ◽  
Cliff G. Robinson ◽  
Michael C. Roach

2020 ◽  
Vol 21 (8) ◽  
pp. 2828 ◽  
Author(s):  
Sławomir Dresler ◽  
Maciej Strzemski ◽  
Jozef Kováčik ◽  
Jan Sawicki ◽  
Michał Staniak ◽  
...  

The impact of long-term chronic cadmium stress (ChS, 0.1 µM Cd, 85 days) or short-term acute cadmium stress (AS, 10 µM Cd, 4 days) on Carlina acaulis (Asteraceae) metabolites was compared to identify specific traits. The content of Cd was higher under AS in all organs in comparison with ChS (130 vs. 16 µg·g−1 DW, 7.9 vs. 3.2 µg·g−1 DW, and 11.5 vs. 2.4 µg·g−1 DW in roots, leaves, and trichomes, respectively) while shoot bioaccumulation factor under ChS (ca. 280) indicates efficient Cd accumulation. High content of Cd in the trichomes from the AS treatment may be an anatomical adaptation mechanism. ChS evoked an increase in root biomass (hormesis), while the impact on shoot biomass was not significant in any treatment. The amounts of ascorbic acid and sum of phytochelatins were higher in the shoots but organic (malic and citric) acids dominated in the roots of plants from the ChS treatment. Chlorogenic acid, but not ursolic and oleanolic acids, was elevated by ChS. These data indicate that both chelation and enhancement of antioxidative power contribute to protection of plants exposed to long-term (chronic) Cd presence with subsequent hormetic effect.


Science ◽  
1985 ◽  
Vol 229 (4718) ◽  
pp. 1079-1080
Author(s):  
R. J. RAIKOW

1999 ◽  
Vol 14 (8) ◽  
pp. 641-642
Author(s):  
E. Wilde ◽  
E.D. Bigler ◽  
P.V. Gandhi

2018 ◽  
pp. 31-39
Author(s):  
Eduardo L. Longui ◽  
Ana T. D. Galão ◽  
Kishore S. Rajput ◽  
Antônio C.G. de Melo

La madera varía entre las especies, desde la médula hasta la corteza, desde las raíces hasta la corona dentro de la misma planta, para garantizar la seguridad y la eficiencia hidráulica. La heterogeneidad de la madera de Inga laurina (Sw.) Willd. es aquí investigada, siendo una especie que prospera bien en todos los bosques brasileños importantes. La madera de tallo de I. laurina poseía vasos estrechos; fibras de paredes gruesas; rayos más anchos, altos y en mayor frecuencia, características que proporcionan ajustes hidráulicos y mecánicos. Las fibras de paredes gruesas y menos parénquima, en comparación con la raíz, brindan la fuerza suficiente para apoyar la corona grande. Una mayor proporción de células de parénquima en las raíces da como resultado una gran capacidad de almacenamiento de almidón, que es importante para la recuperación de los brotes después del daño por fuego, común en el Cerrado. Wood varies between species, from pith to bark, roots to crown within the same plant to ensure hydraulic safety and efficiency. Inga laurina (Sw.) Willd. is investigated herewith for the structural heterogeneity of the wood, since this species thrives well in all major forests of Brazil. I. laurina stem wood possessed narrow vessels; thick walled fibres; wider, taller and higher frequency of rays, features that provide hydraulic and mechanical adjustments. Thick walled fibres and less parenchyma as compared to root provide enough strength to stem to support the large crown. Higher proportion of parenchyma cells in roots results in a high storage capacity for starch, which is important for the shoot recovery after fire damage, common in the Cerrado.


Author(s):  
Philip J. White ◽  
Michael J. Bell ◽  
Ivica Djalovic ◽  
Philippe Hinsinger ◽  
Zed Rengel

AbstractThere are many terms used to define aspects of potassium (K) use efficiency of plants. The terms used most frequently in an agricultural context are (1) agronomic K use efficiency (KUE), which is defined as yield per unit K available to a crop and is numerically equal to the product of (2) the K uptake efficiency (KUpE) of the crop, which is defined as crop K content per unit K available and (3) its K utilization efficiency (KUtE), which is defined as yield per unit crop K content. There is considerable genetic variation between and within plant species in KUE, KUpE, and KUtE. Root systems of genotypes with greatest KUpE often have an ability (1) to exploit the soil volume effectively, (2) to manipulate the rhizosphere to release nonexchangeable K from soil, and (3) to take up K at low rhizosphere K concentrations. Genotypes with greatest KUtE have the ability (1) to redistribute K from older to younger tissues to maintain growth and photosynthesis and (2) to reduce vacuolar K concentration, while maintaining an appropriate K concentration in metabolically active subcellular compartments, either by anatomical adaptation or by greater substitution of K with other solutes in the vacuole. Genetic variation in traits related to KUpE and KUtE might be exploited in breeding crop genotypes that require less K fertilizer. This could reduce fertilizer costs, protect the environment, and slow the exhaustion of nonrenewable resources.


2012 ◽  
pp. 293-299
Author(s):  
R. Maiti ◽  
P. Satya ◽  
D. Rajkumar ◽  
A. Ramaswamy

Sign in / Sign up

Export Citation Format

Share Document