anatomical adaptation
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 12)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 74 ◽  
Author(s):  
Worasitikulya Taratima ◽  
Thapakorn Ritmaha ◽  
Nakorn Jongrungklang ◽  
Pitakpong Maneerattanarungroj

Abstract Anatomical adaptation is an important feature that allows plants to mitigate drought stress. A comparative leaf anatomy of two drought-tolerant sugarcane cultivars, KKU-1999-02 and KKU-1999-03, was studied in early drought stress between 30 and 90 days after planting using peeling and freehand sectioning methods. KKU-1999-02 and KKU-1999-03 showed different anatomical adaptation features, such as increase in cuticle thickness, bulliform cell size, vascular bundle, and stomatal density, and decreases in leaf thickness and stomatal size. KKU-1999-02 showed more remarkable anatomical changes than KKU-1999-03. The results provide important information that can be applied in combination with other agronomic traits in sugarcane breeding programs to expand the adaptation devices of tolerant cultivars under preliminary drought stress.


2020 ◽  
Vol 49 (4) ◽  
pp. 903-911
Author(s):  
Parveen Rashid ◽  
Kishwar Jahan Shethi ◽  
Asfaque Ahmed

Investigation on leaf anatomical adaptation of 18 mangrove plant species was carried out. Among the 18 species 13 were dorsiventral and five were isobilateral type. All the species had special stomatal structure and variable cuticle layer to minimize transpiration. Most of the species had succulent leaves with leaf thickness ranging from around 232 to 1363 μm. As an indication of salt secretion, both glandular and non-glandular trichomes were observed in several species. Although presence of single to multilayered hypodermis might effectively function as water storage tissue, several studied mangrove plant species e.g. Cynometra ramiflora L., Phoenix paludosa Roxb., Pongamea pinnata (L.) Pierre, Sonneratia apetala Buch. - Ham., S. caseolaris (L.) Engl. and Xylocarpus moluccensis (Lamk.) M. Roem. showed complete absence of hypodermis. This might be due to moderate saline condition. In addition, marked terminal tracheids in mesophyll tissue of a number of species might help with capillary water storage within the leaf. To enhance mechanical support several species were found to develop considerable amount of diverse sclereids within the mesophyll tissue and surrounding vascular bundle. Although maximum anatomical adaptations are common for plants growing in saline habitat it may be suggested that these features were differentially developed in plants specifically grown in mesohaline zone.


Author(s):  
Philip J. White ◽  
Michael J. Bell ◽  
Ivica Djalovic ◽  
Philippe Hinsinger ◽  
Zed Rengel

AbstractThere are many terms used to define aspects of potassium (K) use efficiency of plants. The terms used most frequently in an agricultural context are (1) agronomic K use efficiency (KUE), which is defined as yield per unit K available to a crop and is numerically equal to the product of (2) the K uptake efficiency (KUpE) of the crop, which is defined as crop K content per unit K available and (3) its K utilization efficiency (KUtE), which is defined as yield per unit crop K content. There is considerable genetic variation between and within plant species in KUE, KUpE, and KUtE. Root systems of genotypes with greatest KUpE often have an ability (1) to exploit the soil volume effectively, (2) to manipulate the rhizosphere to release nonexchangeable K from soil, and (3) to take up K at low rhizosphere K concentrations. Genotypes with greatest KUtE have the ability (1) to redistribute K from older to younger tissues to maintain growth and photosynthesis and (2) to reduce vacuolar K concentration, while maintaining an appropriate K concentration in metabolically active subcellular compartments, either by anatomical adaptation or by greater substitution of K with other solutes in the vacuole. Genetic variation in traits related to KUpE and KUtE might be exploited in breeding crop genotypes that require less K fertilizer. This could reduce fertilizer costs, protect the environment, and slow the exhaustion of nonrenewable resources.


2020 ◽  
Vol 21 (8) ◽  
pp. 2828 ◽  
Author(s):  
Sławomir Dresler ◽  
Maciej Strzemski ◽  
Jozef Kováčik ◽  
Jan Sawicki ◽  
Michał Staniak ◽  
...  

The impact of long-term chronic cadmium stress (ChS, 0.1 µM Cd, 85 days) or short-term acute cadmium stress (AS, 10 µM Cd, 4 days) on Carlina acaulis (Asteraceae) metabolites was compared to identify specific traits. The content of Cd was higher under AS in all organs in comparison with ChS (130 vs. 16 µg·g−1 DW, 7.9 vs. 3.2 µg·g−1 DW, and 11.5 vs. 2.4 µg·g−1 DW in roots, leaves, and trichomes, respectively) while shoot bioaccumulation factor under ChS (ca. 280) indicates efficient Cd accumulation. High content of Cd in the trichomes from the AS treatment may be an anatomical adaptation mechanism. ChS evoked an increase in root biomass (hormesis), while the impact on shoot biomass was not significant in any treatment. The amounts of ascorbic acid and sum of phytochelatins were higher in the shoots but organic (malic and citric) acids dominated in the roots of plants from the ChS treatment. Chlorogenic acid, but not ursolic and oleanolic acids, was elevated by ChS. These data indicate that both chelation and enhancement of antioxidative power contribute to protection of plants exposed to long-term (chronic) Cd presence with subsequent hormetic effect.


2019 ◽  
Vol 186 (17) ◽  
pp. e14-e14
Author(s):  
Caroline Chloe Lassaigne ◽  
Charlotte Boyer ◽  
Lucile Sautier ◽  
Olivier Taeymans

BackgroundThis study aimed to compare the ultrasonographic and histological features of the supraspinatus tendon (ST) and its peculiar appearance in contrast with the biceps brachii tendon.MethodsFor this purpose, 19 non-lame dog cadavers were subjected to an ultrasonographic and histologic evaluation of both shoulders after postmortem examination.ResultsClose to their insertion on the greater tubercle, all STs displayed a widened portion with a deep central hypoechoic area lacking a fibrillar pattern, when compared with its more proximal aspect and adjacent biceps brachii. Histologically this deep portion corresponded to poorly organised collagen bundles interspersed within a myxoid substance mainly composed of mucopolysaccharides. This central myxoid area with collagen disarray was responsible for the reduced echogenicity on ultrasound.ConclusionThe focal widening of the ST insertion and its central mucopolysaccharidic composition could be an anatomical adaptation to marked forces specifically applied to this tendon. However, the ultrasound and histological appearances are very similar to those described in tendinosis, which represents a confounding factor in diagnosing tendonitis at the insertion of the supraspinatus. In the absence of other ultrasonographic criteria of tendinopathy, a hypoechoic central area in the ST near its insertion should be considered normal.


2019 ◽  
Vol 29 (3) ◽  
pp. 274-283 ◽  
Author(s):  
James Kavanaugh ◽  
Geoffrey Hugo ◽  
Cliff G. Robinson ◽  
Michael C. Roach

Sign in / Sign up

Export Citation Format

Share Document