scholarly journals DGS Loaded Broadband Circular Patch Antenna for Satellite Communications

2021 ◽  
pp. 485-491
Author(s):  
Nelapati Ananda Rao ◽  
◽  
V. V. Satyanarayana Tallapragada ◽  
D. Venkat Reddy ◽  
K. L. Narasihimha Prasad

Broadband slotted circular patch antenna with Defective Ground Structure intended for Ku band satellite communications is presented in this communication. The proposed antenna has a fundamental circular radiating element in which a square ring slot is etched along with a circular slot inside it. The ground is etched with a rhombus ring slot at the center and square slots in the corners. The defective ground provides multiple frequencies of operation and the slots in the radiating element act as filters combining the multiple frequencies of operation into broadband. The antenna is fabricated on an FR4 substrate with a volume of 40mm×48mm×1.59mm and a dielectric constant of 4.4. The antenna has been excited using a stripline feed of 50Ω impedance. The proposed antenna has an impedance bandwidth of 1.87GHz ranging from 13.61GHz to 15.48GHz with gain and directivity of 2.2dB and 6.09dB at 13.84GHz, 2.8dB and 5.47dB at 14.48GHz, respectively. The simulated and measured antenna results are in good agreement, showing that the proposed techniques enhance the antenna bandwidth.

2013 ◽  
Vol 6 (5) ◽  
pp. 497-503 ◽  
Author(s):  
Kirti Vyas ◽  
Garima Sanyal ◽  
Arun Kumar Sharma ◽  
Pramod Kumar Singhal

The present paper reports the gain enhancement over a wideband (12–15 GHz) in a coplanar waveguide (CPW)-fed circular patch antenna with circular defected ground structure (DGS). Two compact coplanar circular antennas have been designed and fabricated with and without DGS of same volume 18 × 20 × 1.6 mm3, built over FR4-epoxy substrate (εr = 4.4). Gain enhancement has been achieved by optimizing the current distribution with suitable DGS. For this purpose, structural designs have been optimized by parametric simulations in HFSS and CST MWS. Both the antennas can perform well in variety of wireless communication including WLAN IEEE 802.11 g/a (5.15–5.35 GHz and 5.725–5.825 GHz) and X-band applications including short range, tracking, missile guidance, and radar communication that ranges roughly from 8.29 to 11.4 GHz. The measured experimental results show that impedance bandwidth (S11 < −10 dB) of antenna with DGS is 100%. The antenna with DGS offers gain improvement by 2.7 dB for 13 GHz and 7 dB for 14 GHz. The performance of antenna with DGS is compared to conventional CPW-fed circular patch antenna (without DGS) in terms of reflection coefficient, radiation characteristics, and gain.


Author(s):  
Akhila John Davuluri ◽  
P. Siddaiah

This paper proposes a microstrip patch antenna (MSPA) in the Ku band for satellite applications. The antenna is small in size with dimensions of about 40 mm×48 mm×1.59 mm and is fed with a coaxial cable of 50 Ω impedance. The proposed antenna has a wide bandwidth of 3.03 GHz ranging from 12.8 GHz to 15.8 GHz. To realize the characteristics of wideband the techniques of defective ground structure (DGS) and etching slots on the radiating element are adopted. The antenna is modeled on the FR4 substrate. A basic circular patch is selected for the design of a dual-frequency operation and in the next step DGS is introduced into the basic antenna and enhanced bandwidth is achieved at both the frequencies. To attain wider bandwidth two slots are etched on the radiating element of which one is a square ring slot and the second one is a circular ring slot. The novelty of the proposed antenna is a miniaturized design and unique response within the Ku band region which is applicable for wireless UWB applications with VSWR <2 and an average gain of 3.6 dB.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Dattatreya Gopi ◽  
Appala Raju Vadaboyina ◽  
J. R. K. Kumar Dabbakuti

AbstractA simple low profile defected ground structure based monopole circular-shaped patch antenna is proposing for ultrawide-band applications. The design allows for a simple and compact structure on the FR-4 substrate material. The proposed design initially has a meager antenna gain and bandwidth. To increase the antenna bandwidth and gain, the defective ground structure is implemented with four dumble-shaped slots. Parametric analysis is considered to find the radius of circular patch for tuning of UWB frequency applications. The proposed MCP antenna resonates at 2.9 GHz, 9.1 GHz frequencies with a S11 of − 34.84 dB, − 33.74 dB, respectively, and achieves 8.1 GHz (2.5–10.6 GHz) impedance bandwidth concerning the − 10 dB reference line of the reflection coefficient. The gains are 8.4 dBi, 8.2 dBi for the two resonant frequencies, and the radiation patterns are semi-omnidirectional, omnidirectional. The proposed antenna has-been validated by observing good agreement between the simulation and the measured results.


Author(s):  
Bismah Hasan ◽  
Kamran Raza

Slotted circular printed layered patch antenna is designed, simulated and fabricated for 5G (Fifth Generation) wireless communication applications. The antenna consists of slots in the main radiating circular patch element for miniaturizing the size of the radiating element and providing dual band radiation characteristics. The feed line is separated on bottom substrate layer with EBG (Electromagnetic Band-Gap) embedded for enhancing the gain characteristics of the antenna. Superstrate layer is also used for improving the gain of the antenna where the distance from the radiating antenna element is optimized for maximizing the impedance bandwidth and radiation characteristics. The feed realization and impedance matching of the radiating slotted circular patch antenna is done by inducing slot at the middle ground plane of the slot embedded circular patch antenna system. The proposed configuration provides power radiation gain values of more than 5 dB for the Ka band of communications, whereas the impedance bandwidth of the antenna is verified for the dual resonances at 27.5 and 28.5 GHz. Dual band radiation characteristics are attained by embedding and optimizing the slot length and width in the circular patch radiator element that is placed on the upper face of the substrate RT Rogers Duroid 5880 layer. The length of the microstrip feed line embedded in the lower layer of the substrate is optimized for providing required bandwidth characteristics for the dual frequency point radiations. The antenna configuration is designed, modeled and simulated in CST (Central Standard Time) Microwave studio. The antenna is fabricated and measured vs simulated frequency response, gain patterns and current density plots are presented for the verification of antenna operation in the desired frequency bands.


2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Rongqiang Li ◽  
Shaoqiu Xiao

A compact broadband implantable circular patch antenna is designed and experimentally demonstrated for Medical Implant Communications Service (MICS) band (402–405 MHz). Compared with other similar implantable antennas, the proposed antenna incorporates three advantages for biotelemetry communication. First, it can realize a broad impedance bandwidth by exhibiting dual resonances. Second, it can obtain a compact structure by introducing two arc-shaped slots, a rectangular slot and a circular slot on metal radiating patch. Finally, it can display a friendly shape by using a circular structure. The proposed antenna occupies a volume of about 431.5 mm3(10.42× 1.27π mm3), which is a compromise between miniaturization and bandwidth. The measured −10 dB impedance bandwidth is 55 MHz (385–440 MHz). Furthermore, the radiation performance and human body safety consideration of the antenna are examined and characterized.


Sign in / Sign up

Export Citation Format

Share Document