scholarly journals An Architecture Design of Auto Channel Switching Unit for Hybrid Visible Light Communication System

2021 ◽  
pp. 522-527
Author(s):  
Rao Kashif ◽  
◽  
Fujiang Lin ◽  
Oluwole John Famoriji ◽  
Shahzad Haider

The revolution in multimedia devices has promoted indoor wireless communication in the last decades. Wireless fidelity (Wi-Fi) connections have expanded rapidly, and more than 5 billion devices have been connected to Wi-Fi each day since 2013, which causes system overloading. This bountiful usage of wireless devices has consumed an excessive amount of the radio spectrum, and the current standard for wireless communication is not able to provide enough capacity for indoor wireless traffic in the next decade. Wi-Fi currently holds 60% of the global traffic; however, secure communication for the internet of things (IoT) and spectrum congestion are two significant challenges for future communication development. Therefore, an affordable, secure, and fast medium for wireless communication is in urgent demand. It should be noted that the spectrum provided by visible light communication (VLC) can be thousands of times wider than the radio frequency (RF) spectrum. The challenge of spectrum congestion and the urgent demand for a high-speed medium can be solved through the application of visible light for indoor communication. It has been proved that each user can achieve a data rate of hundreds of Mbps in the congestion scenario through the application of VLC. But beside these advantages Li-Fi also have some limitations like unavailability in excess and in low light and also limited coverage due to walls and etc. To overcome these limitations the Wi-Fi and VLC hybrid network can be a good solution to continue using privileges of both technologies. A lot of research has been done to introduce a numerous techniques for such hybrid network but we are proposing Auto channel switching unit in this system which will be responsible for shifting and sharing data traffic on both Li-Fi and Wi-Fi channel.

Author(s):  
Patil P.S ◽  
◽  
Rohit Sarve ◽  
Sajal Jaipurkar ◽  
Ingle R.M ◽  
...  

The main focus of this paper is to clarify the concept and working of Li-Fi technology. In present era, wireless communication plays an important role in day to day life. Wifi is the most used wireless technology which transmits data through radio frequencies. However, during multiple accesses WiFi is facing many challenges related to speed, security and efficiency. Also, WiFI emits radio waves which are harmful in hospitals for patients and cannot be used in underground communication and airplanes. These limitations of WiFi are overcome by Li-Fi technology. The term Li-Fi stands for Light Fidelity which uses visible light communication (VLC) to transfer data at high speed. In this paper, a detailed study on Li-Fi technology, its working and future scope is discussed.


Author(s):  
Imran Siddique ◽  
Muhammad Zubair Awan ◽  
Muhammad Yousaf Khan ◽  
Azhar Mazhar

Li-Fi stands for Light-Fidelity. This technology is very new and was proposed by the German physicist Harald Haas in 2011. Light based communication system is the backbone of the future of the communication system. Li-Fi is a wireless technology that uses light emitting diodes (LEDs) for transmission of data. The development of the wireless communication leads to advance research in LiFi technology. The term Li-Fi states to visible light communication (VLC) technology that uses as medium to deliver high-speed communication in a fashion similar to Wi-Fi. Li-Fi comprises a wide range of frequencies and wavelengths, from the Infrared through visible and down to the Ultraviolet spectrum. The immense use of Li-Fi may solve some bottleneck of data transmission in Wi-Fi technology. With the innovation in technology and the number of users, the existing radio-wave spectrum fails to accommodate this need. To resolve the issues of scalability, availability and security, we have come up with the concept of transmitting data wirelessly through light using visible light communication (VLC) technology. This paper objective is to study and describe the LiFi technology. The improvement of the wireless communication leads to advance research in LiFi technology through Visible Light Communications (VLC) Technology.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1098
Author(s):  
Tai-Cheng Yu ◽  
Wei-Ta Huang ◽  
Wei-Bin Lee ◽  
Chi-Wai Chow ◽  
Shu-Wei Chang ◽  
...  

Visible light communication (VLC) is an advanced, highly developed optical wireless communication (OWC) technology that can simultaneously provide lighting and high-speed wireless data transmission. A VLC system has several key advantages: ultra-high data rate, secure communication channels, and a lack of interference from electromagnetic (EM) waves, which enable a wide range of applications. Light-emitting diodes (LEDs) have been considered the optimal choice for VLC systems since they can provide excellent illumination performance. However, the quantum confinement Stark effect (QCSE), crystal orientation, carrier lifetime, and recombination factor will influence the modulation bandwidth, and the transmission performance is severely limited. To solve the insufficient modulation bandwidth, micro-LEDs (μ-LEDs) and laser diodes (LDs) are considered as new ideal light sources. Additionally, the development of modulation technology has dramatically increased the transmission capacity of the system. The performance of the VLC system is briefly discussed in this review article, as well as some of its prospective applications in the realms of the industrial Internet of Things (IoT), vehicle communications, and underwater wireless network applications.


Author(s):  
Luming Yu ◽  
Lai Wang ◽  
Zhibiao Hao ◽  
Yi Luo ◽  
Changzheng Sun ◽  
...  

Abstract Due to spectrum shortage, visible light communication (VLC) has gradually been regarded as an important alternative and reinforcement in wireless communication field. Micro-LEDs are ideal high-speed light sources for VLC due to its significantly improved modulation bandwidth. In this review, the developments of high-speed micro-LEDs in VLC are discussed. While expounding the unique advantages of micro-LED, we also point out the existing problems and challenges. On this basis, we review the outstanding achievements in bandwidth improvement, and also look forward to some promising directions for future research.


2017 ◽  
Vol 4 (1) ◽  
pp. 96 ◽  
Author(s):  
Surendra Shrestha

<p class="Default">In the recent days, Visible Light Communication (VLC), a novel technology that enables standard Light-Emitting-Diodes (LEDs) to transmit data, is gaining significant attention. However, to date, there is very little research on its deployment. The enormous and growing user demand for wireless data is placing huge pressure on existing Wi-Fi technology, which uses the radio and microwave frequency spectrum. Also the radio and microwave frequency spectrum is heavily used and overcrowded. On the other hand, visible light spectrum has huge, unused and unregulated capacity for communications (about 10,000 times greater bandwidth compared to radio spectrum). Li-Fi, the wireless technology based on VLC, is successfully tested with very high speed in lab and also implemented commercially. In the near future, this technology could enable devices containing LEDs, such as car lights, city lights, screens and home appliances, to form their own networks for high speed, secure communication. In this paper the performance analysis of Hadamard Coded Modulation (HCM) for Visible Light Communication (VLC) is carried out. Its performance is compared with that of Orthogonal Frequency Division Multiplexing (OFDM). Also wide overview of need of VLC, applications of VLC and design challenges for VLC are observed. The potential application areas of VLC that are identified include smart lighting of buildings, vehicular communication, defense &amp; security, indoor positioning, road safety, hospitals &amp; healthcare, aviation etc. Aside from the high bandwidth availability of VLC, it has the advantages of very high speed, enhanced security of local networks, less susceptible to interference, less expensive due to co-existence with illumination devices and obviously no fear of health hazards due to radiation.</p><p><strong>Journal of Nepal Physical Society</strong><em><br /></em>Volume 4, Issue 1, February 2017, Page: 93-96</p>


Sign in / Sign up

Export Citation Format

Share Document