scholarly journals Waste Treatment In The Process Of Development Of Oil-Gas Fields

10.12737/157 ◽  
2012 ◽  
Vol 1 (6) ◽  
pp. 44-47
Author(s):  
Ярыгин ◽  
G. Yarygin ◽  
Потапенко ◽  
A. Potapenko ◽  
Макеев ◽  
...  
Keyword(s):  

Problem of treatment and recycling of waste, being formed at stages of construction and operation of oil-gas fields is considered in this article. Creation of independent waste treatment object as a part of general oil-gas field infrastructure is offered.

2018 ◽  
Vol 18 (23) ◽  
pp. 16885-16896 ◽  
Author(s):  
Daniel H. Cusworth ◽  
Daniel J. Jacob ◽  
Jian-Xiong Sheng ◽  
Joshua Benmergui ◽  
Alexander J. Turner ◽  
...  

Abstract. Methane emissions from oil/gas fields originate from a large number of relatively small and densely clustered point sources. A small fraction of high-mode emitters can make a large contribution to the total methane emission. Here we conduct observation system simulation experiments (OSSEs) to examine the potential of recently launched or planned satellites to detect and locate these high-mode emitters through measurements of atmospheric methane columns. We simulate atmospheric methane over a generic oil/gas field (20–500 production sites of different size categories in a 50×50 km2 domain) for a 1-week period using the WRF-STILT meteorological model with 1.3×1.3 km2 horizontal resolution. The simulations consider many random realizations for the occurrence and distribution of high-mode emitters in the field by sampling bimodal probability density functions (PDFs) of emissions from individual sites. The atmospheric methane fields for each realization are observed virtually with different satellite and surface observing configurations. Column methane enhancements observed from satellites are small relative to instrument precision, even for high-mode emitters, so an inverse analysis is necessary. We compare L1 and L2 regularizations and show that L1 regularization effectively provides sparse solutions for a bimodally distributed variable and enables the retrieval of high-mode emitters. We find that the recently launched TROPOMI instrument (low Earth orbit, 7×7 km2 nadir pixels, daily return time) and the planned GeoCARB instrument (geostationary orbit, 2.7×3.0 km2 pixels, 2 times or 4 times per day return times) are successful (> 80 % detection rate, < 20 % false alarm rate) at locating high-emitting sources for fields of 20–50 emitters within the 50×50 km2 domain as long as skies are clear. They are unsuccessful for denser fields. GeoCARB does not benefit significantly from more frequent observations (4 times per day vs. 2 times per day) because of a temporal error correlation in the inversion, unless under partly cloudy conditions where more frequent observation increases the probability of clear sky. It becomes marginally successful when allowing a 5 km error tolerance for localization. A next-generation geostationary satellite instrument with 1.3×1.3 km2 pixels, hourly return time, and 1 ppb precision can successfully detect and locate the high-mode emitters for a dense field with up to 500 sites in the 50×50 km2 domain. The capabilities of TROPOMI and GeoCARB can be usefully augmented with a surface air observation network of 5–20 sites, and in turn the satellite instruments increase the detection capability that can be achieved from the surface sites alone.


Author(s):  
E L Alekseeva ◽  
M K Kurakin ◽  
M A Kovalev ◽  
A A Lapechenkov ◽  
M L Shishkova ◽  
...  

2014 ◽  
Vol 1073-1076 ◽  
pp. 2244-2247
Author(s):  
Hu Sun ◽  
Zhi Jun Ning ◽  
Zu Wen Wang ◽  
Zhen Li ◽  
Zhi Guo Wang

Erosion is a main failure of tubings and downhole tools in Changqing gas field. It is necessary to evaluate the erosion rate for the safety of tubing and strings. In this paper, the erosion of P110 steel, in the 0.2%wt guar gum fracturing fluid which contains sands, is investigated by weight loss method in the self-made jet experiment device. It is indicated that the erosion rate increases with the increment of slurry velocity exponentially. When the slurry velocity is in low velocity area, the electrochemical corrosion of dissolved oxygen dominates in erosion mechanism; when slurry velocity increases into middle velocity area, the weight loss is controlled by the synergism of corrosion-erosion; and when the slurry velocity increases into high velocity area, the weight loss rate is dominantly depended on erosion of particles. The results can provide guidelines for large-scale fracturing work of Changqing gas fields.


2021 ◽  
Author(s):  
Tran Nguyet Ngo ◽  
Lee Thomas ◽  
Kavitha Raghavendra ◽  
Terry Wood

Abstract Transporting large volumes of gas over long distances from further and deeper waters remains a significant challenge in making remote offshore gas field developments technologically and economically viable. The conventional development options include subsea compression, floating topside with topside compression and pipeline tie-back to shore, or floating liquefied natural gas vessels. However, these options are CAPEX and OPEX intensive and require high energy consumption. Demand for a lower emission solution is increasingly seen as the growing trend of global energy transition. Pseudo Dry Gas (PDG) technology is being developed by Intecsea, Worley Group and The Oil & Gas Technology Centre (Aberdeen) and tested in collaboration with Cranfield University. This is applied to develop stranded or remote gas reserves by removing fluids at the earliest point of accumulation at multiple locations, resulting in near dry gas performance. This technology aims to solve liquid management issues and subsequently allows for energy efficient transportation of the subsea gas enabling dramatic reductions in emissions. The PDG prototype tested using the Flow Loop facilities at Cranfield University has demonstrated the concept’s feasibility. Due to a greater amount of gas recovered with a much lower power requirement, the CO2 emissions per ton of gas produced via the PDG concept is by an order of magnitude lower than conventional methods. This study showed a reduction of 65% to 80% against standard and alternative near future development options. The paper considers innovative technology and a value proposition for the Pseudo Dry Gas concept based on a benchmarked study of a remote offshore gas field. The basin was located in 2000m of water depth, with a 200km long subsea tie-back. To date the longest tieback studied was 350km. It focused on energy consumption and carbon emission aspects. The conclusion is that decarbonisation of energy consumption is technically possible and can be deployed subsea to help meet this future challenge and push the envelope of subsea gas tie-backs.


2015 ◽  
Vol 48 (8) ◽  
pp. 325-330 ◽  
Author(s):  
Y.H. Al-Naumani ◽  
J.A. Rossiter
Keyword(s):  

2013 ◽  
pp. 95-100
Author(s):  
Qing You ◽  
Caili Dai ◽  
Fulin Zhao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document