Polysaccharides of the connective tissue cells of the duodenum wall in human embryo

10.12737/7361 ◽  
2014 ◽  
Vol 8 (1) ◽  
pp. 0-0 ◽  
Author(s):  
Тельцов ◽  
L. Teltsov ◽  
Добрынина ◽  
I. Dobrynina ◽  
Музыка ◽  
...  

These studies are conducted on 36 human embroys and foetus. Four stages are marked out in the development of connective tissue of the duodenum: 1) mesenchymal stage (28-35 the day of the embryo); 2) the stage of loose embryonic connective tissue (35 days - 3.5 months of foetus); 3) the stage of formation of the definitive loose connective tissue (3,5-6,5 months of the fetus); 4) the stage of initial definitive development (6,5 months before birth of the fetus). Each stage is characterized by a specific set of cellular differens, chemical composition of polysaccarides of cells of connective tissue and intercellular substance. On mesenchymal stage of development, the cells and intercellular substance CHIC-positive substances – contain glycogen and proteoglycans that give metachromasia, stained with alcian blue on Shubitch, Hale, but CHIC are negative. At the stage of loose connective tissue in mesenchymal cells, the reduction of glycogen and accumulation of glycosaminoglycans are identified. Glycogen, hyaluronic acid and precursors sulfated groups glycosaminogly-cans are detected in fibroblasts, endothelium of capillaries, in primary blood cells, in macrophages. At the stage of formation of loose connective tissue, there is the accumulation of TIME – amelanotic compounds (proteoglycans) in the cells and in the intercellular substance. Identification of them showed that the precursors of sulfated glycosaminoglycans and chondroitin sulfates (HSC) type C are identified. The intensity of the response to glycogen decreases. In the initial definitive development in the cytoplasm of fibroblasts – there is moderate staining on Hale-positive substances, poor color on Shubich and toluidine blue. In plasmablastics and in B-lymphocytes, the glycogen and glycosaminoglycans types of hyaluronic acid are identified. In the cytoplasm of mast cells, the substances such as hyaluronic acid, HSH type and unfinished synthesis heparina are identified.

1975 ◽  
Vol 142 (1) ◽  
pp. 41-49 ◽  
Author(s):  
E Linder ◽  
A Vaheri ◽  
E Ruoslahti ◽  
J Wartiovaara

Fibroblast surface (SE) antigen is present in fibrillar surface structures of cultured normal fibroblasts, shed to the extracellular medium, and is also found in circulation (serum and plasma). Malignant fibroblasts (transformed by viruses) do not express SF antigen on the cell surface. In this study the in vivo differentiation and distribution of SF antigen has been investigated in the developing chick embryo using cryostat sections and immunofluorescence. The major findings were: (a) SF antigen was detectable in the loose connective tissue of very early (2-to 3-day old) embryos. (b) Condensation of SF antigen was seen in various boundary membranes such as the glomerular and tubular basement membranes of the kidney, the boundary membranes of the notochord, yolk sac, and vitelline membranes and liver sinusoids. (c) SF antigen was found to be cell-type specific. It was seen as a fibrillar network in the loose connective tissue of different organs but not in the parenchymal cells. It was not found in muscle cells at any stage of development. (d) The antigen was present in the undifferentiated mesenchymal cells of the kidney; but not found after their development into epithelial cells of the secretory tubules. (e) Both in vivo and in fibroblast cultures SF antigen was distributed as a fibrillar network. These data indicate that SF antigen is a "differentiation antigen" restricted to certain cells of mesenchymal origin and character, and that is accumulates in the connective tissue during embryogenesis.


Blood ◽  
1978 ◽  
Vol 51 (4) ◽  
pp. 601-610 ◽  
Author(s):  
CA Pugsley ◽  
IJ Forbes ◽  
AA Morley

Abstract The immunology of chronic hypoplastic marrow failure (CHMF, aplastic anemia) was studied in an experimental murine model of the disease induced by busulfan. B lymphocytes of peripheral blood, spleen, and bone marrow were reduced to 30%–40% and T lymphocytes of thymus, spleen, marrow, and blood were decreased to 20%–70% of control values. IgG and IgM antibody titer to sheep red blood cells were reduced to one- third of control levels, and splenic IgG, but not IgM, plaque-forming cells were fewer on day 7 after antigen stimulation. The proliferative responses to phytohemagglutinin or concanavalin A were reduced in cultures of peripheral blood lymphocytes, splenic lymphocytes, and thymocytes, and cutaneous delayed-type hypersensitivity induced by dinitrofluorobenze was not detected in mice with CHMF. The results demonstrate disturbance of a variety of cellular and humoral functions and suggest that the disturbance was due to quantitative and possibly qualitative abnormalities of the cell types subserving these functions. The results suggest that residual cell injury, the lesion underlying experimental CHMF, is not confined to the myeloid stem cell but also involved cells of the lymphoid series.


1997 ◽  
Vol 77 (4) ◽  
pp. 715-721 ◽  
Author(s):  
H. H. Sunwoo ◽  
L. Y. M. Sim ◽  
T. Nakano ◽  
R. J. Hudson ◽  
J. S. Sim

The emerging wapiti industry in North America is based largely on markets for velvet antlers which are used in oriental medicine. Despite the economic opportunity, enthusiasm has been dampened by incomplete understanding of the chemical and pharmacological properties of velvet antler. This study characterizes polysaccharide constituents of glycosaminoglycans in growing antler of wapiti (Cervus elaphus). Glycosaminoglycans were isolated from four sections (tip, upper, middle and base) of growing antlers, and were studied using cellulose acetate electrophoresis, gel electrophoresis, enzymatic digestion and gel chromatography. The tip and upper sections of the antler which are rich in cartilaginous tissues contained chondroitin sulfate as a major glycosaminoglycan with small amounts of hyaluronic acid. In the middle and base sections containing bone and bone marrow, chondroitin sulfate was also a major glycosaminoglycan with small amounts of hyaluronic acid and chondroitinase-ACI resistant materials. More than half of chondroitin sulfate from the middle and base sections had larger molecular size than did the chondroitin sulfates from the tip and upper sections. Key words: Glycosaminoglycans, chondroitin sulfate, antler, wapiti


The Angler ( Lophius piscatorius ) is a fish much modified for a bottom habit, and apart from many peculiarities of form and structure associated with this particular mode of life, is remarkable for the looseness of its skin and the abundance of soft connective tissue that separates it from the underlying fascia and muscles. Within this layer of loose connective tissue lie many of the larger trunks of the lymphatic system, mostly of very considerable size and easy to inject. The fish thus furnishes material better than most for the study of this system.


2007 ◽  
Vol 32 (5) ◽  
pp. 556-559 ◽  
Author(s):  
M. C. SBERNARDORI ◽  
P. BANDIERA

The histopathology of the central parts of 40 A1 pulleys from adult patients with primary trigger fingers was studied using light and transmission electron microscopes and the findings were compared with those in a control series of 10 normal A1 pulleys. The evaluation of the normal A1 pulley revealed a bi-laminar structure. The deepest layer was composed of dense normal connective tissue. The outermost layer was formed by loose connective tissue. In trigger digits, it was possible to identify a tri-laminar structure. The deepest layer was composed of irregular connective tissue, formed by small collagen fibres and abundant extracellular matrix. A considerable amount of chondroid-metaplasia was present in this layer. The middle layer contained dense, normal connective tissue with some fibrocytes. The outermost layer was formed of loose connective tissue. In conclusion, there was an additional layer in the A1 pulley in pathological cases which was not present in normal pulleys.


1984 ◽  
Vol 57 (6) ◽  
pp. 1648-1654 ◽  
Author(s):  
P. M. Sampson ◽  
R. B. Boyd ◽  
G. G. Pietra ◽  
A. P. Fishman

The suitability of an isolated lung, perfused under carefully monitored conditions, for the study of the biosynthesis of glycosaminoglycans was examined for the rat lung using either [35S]-sulfate or [6-3H]glucosamine. Metabolic and electron-microscopic studies after 3 h of perfusion showed that under the conditions of this study the isolated lung showed no anatomical or metabolic derangements. All glycosaminoglycans normally synthesized in the intact lung were identified. The predominant glycosaminoglycan was heparan sulfate (40% of total). Approximately 14% of the glucosamine incorporated into the glycosaminoglycans was found in hyaluronic acid. Less than 5% of either label was in heparin. The remainder of the synthesized glycosaminoglycans, with the exception of 10% which could not be identified, consisted of the chondroitin sulfates and dermatan sulfate. The relative proportions of the newly synthesized glycosaminoglycans, including the low amounts of heparin, are similar to those found in isolation of endogenous lung glycosaminoglycans. The isolated perfused rat lung appears to be a useful model for the study of glycosaminoglycan biosynthesis by the intact lung.


1989 ◽  
Vol 88 (3) ◽  
pp. 312-316
Author(s):  
Carlo Garzelli ◽  
Antonio Marchetti ◽  
Anna Pacciardi ◽  
Carla Puglisi ◽  
Fulvio Basolo

Sign in / Sign up

Export Citation Format

Share Document