scholarly journals Regulation of the plasminogen activator activity and inflammatory environment via transforming growth factor-beta regulation of sperm in porcine uterine epithelial cells

2020 ◽  
Vol 35 (4) ◽  
pp. 297-306
Author(s):  
Su-jin Kim ◽  
Hee-Tae Cheong ◽  
Choon-keun Park
The Prostate ◽  
1992 ◽  
Vol 21 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Debra M. Sutkowski ◽  
Chau-Jye Fong ◽  
Julia A. Sensibar ◽  
Alfred W. Rademaker ◽  
Edward R. Sherwood ◽  
...  

1987 ◽  
Vol 105 (2) ◽  
pp. 957-963 ◽  
Author(s):  
O Saksela ◽  
D Moscatelli ◽  
D B Rifkin

Basic fibroblast growth factor (bFGF), a potent inducer of angiogenesis in vivo, stimulates the production of both urokinase- and tissue-type plasminogen activators (PAs) in cultured bovine capillary endothelial cells. The observed increase in proteolytic activity induced by bFGF was effectively diminished by picogram amounts of transforming growth factor beta (TGF beta), but could not be abolished by increasing the amount of TGF beta. However, the inhibition by TGF beta was greatly enhanced if the cells were pretreated with TGF beta before addition of bFGF. After prolonged incubation of cultures treated simultaneously with bFGF and TGF beta, the inhibitory effect of TGF beta diminished and the stimulatory effect of the added bFGF dominated as assayed by PA levels. TGF beta did not alter the receptor binding of labeled bFGF, nor did a 6-h pretreatment with TGF beta reduce the amount of bFGF bound. The major difference between the effects of bFGF and TGF beta was that while bFGF effectively enhanced PA activity expressed by the cells, TGF beta decreased the amounts of both cell-associated and secreted PA activity by decreasing enzyme production. Both bFGF and TGF beta increased the secretion of the endothelial-type plasminogen activator inhibitor.


1993 ◽  
Vol 264 (4) ◽  
pp. F623-F628 ◽  
Author(s):  
F. Law ◽  
R. Rizzoli ◽  
J. P. Bonjour

The effect(s) of transforming growth factor-beta (TGF-beta) on Pi transport was investigated in confluent opossum kidney (OK) epithelial cells. TGF-beta induced a time- and concentration-dependent decrease in the initial rate of sodium-dependent Pi, but not alanine, transport. This selective inhibitory effect on Pi transport was largely reversible and was not associated with a rise in adenosine 3',5'-cyclic monophosphate production. The reduction in Pi uptake was also independent of changes in extracellular calcium concentrations and prostaglandin synthesis. TGF-beta-mediated Pi transport inhibition appeared to involve neither pertussis toxin-sensitive G protein(s) nor augmented protein kinase C activity. However, the probable role of a serine/threonine protein kinase in signal transduction was supported by the considerable attenuation of TGF-beta effect by H-7. Furthermore, the TGF-beta-induced Pi transport reduction was blunted by cycloheximide and abolished by actinomycin D. In conclusion, TGF-beta selectively inhibits the activity of the sodium-dependent Pi transport system present in the apical membrane of renal epithelial cells. This action appears to be exerted via an unprecedented inhibitory pathway that might involve a serine/threonine protein kinase and alterations in the transcriptional and translational processes.


Sign in / Sign up

Export Citation Format

Share Document