scholarly journals Post-peak Evolution of the Muskoka Domain, Western Grenville Province: Ductile Detachment Zone in a Crustal-scale Metamorphic Core Complex

2015 ◽  
Vol 42 (4) ◽  
pp. 403 ◽  
Author(s):  
Toby Rivers ◽  
Walfried Schwerdtner

The Ottawa River Gneiss Complex (ORGC) in the western Grenville Province of Ontario and Quebec is interpreted as the exhumed mid-crustal core of a large metamorphic core complex. This paper concerns the post-peak evolution of the Muskoka domain, the highest structural level in the southern ORGC that is largely composed of amphibolite-facies straight gneiss derived from retrogressed granulite-facies precursors. It is argued that retrogression and high strain occurred during orogenic collapse and that the Muskoka domain acted as the ductile detachment zone between two stronger crustal units, the underlying granulite-facies core known as the Algonquin domain and the overlying lower grade cover comprising the Composite Arc Belt. Formation of the metamorphic core complex followed Ottawan crustal thickening, peak metamorphism and possible channel flow, and took place in a regime of crustal thinning and gravitational collapse in which the cool brittle–ductile upper crust underwent megaboudinage and the underlying hot ductile mid crust flowed into the intervening megaboudin neck regions. Post-peak crustal thinning in the Muskoka domain began under suprasolidus conditions, was facilitated by widespread retrogression, and was heterogeneous, perhaps attaining ~90% locally. It was associated with a range of ductile, high-temperature extensional structures including multi-order boudinage and associated extensional bending folds, and a regional system of extension-dominated transtensional cross-folds. These ductile structures were followed by brittle–ductile fault propagation folding at higher crustal level after the gneiss complex was substantially exhumed and cooled. Collectively the data record ~60 m.y. of post-peak extension on the margin of an exceptionally large metamorphic core complex in which the ductile detachment zone has a true thickness of ~7 km. The large scale of the core complex is consistent with the deep level of erosion, and the long duration of extensional collapse is compatible with double thickness crust at the metamorphic peak, the presence of abundant leucosome in the mid crust and widespread fluid-fluxed retrogression, collectively pointing to the important role of core complexes in crustal cooling after the peak of the Grenvillian Orogeny.RÉSUMÉLe complexe gneissique de la rivière des Outaouais (ORGC) dans la portion ouest de la Province de Grenville au Québec et en Ontario est interprété comme le cœur d’un grand complexe métamorphique à coeur de noyau. Le présent article porte sur l’évolution post-pic du domaine de Muskoka, soit le niveau structural le plus élevé de l’ORGC composé en grande partie d’orthogneiss au faciès amphibolite dérivés de précurseurs au faciès granulite. Nous soutenons que la rétromorphose et les grandes déformations se sont produites durant l’effondrement orogénique et que le domaine de Muskoka en a été une zone de détachement ductile entre deux unités crustales plus résistantes, le cœur au faciès granulite sous-jacent étant le domaine Algonquin, et la chapeau sus-jacent à plus faible grade de métamorphisme comprenant le Ceinture d’Arc Composite. La formation du complexe métamorphique à coeur de noyau est survenue après l’épaississement crustale ottavien, le pic métamorphique et le possible flux en chenal, et s’est produit en régime d’amincissement crustal et d’effondrement gravitationnel au cours duquel la croûte supérieure refroidie a subit un mégaboudinage et où la croûte moyenne chaude et ductile sous-jacente a flué dans les régions entre les mégaboudins. L’amincissement crustale post-pic dans le domaine de Muskoka, qui a débuté en conditions suprasolidus, a été facilité par une rétromorphose généralisée, hétérogène, atteignant à peu près 90 % par endroits. Celle-ci a été associée avec une gamme de structures d’extension ductiles de haute température, incluant du boudinage de plusieurs ordres de grandeur et de plis de flexure d’extension, ainsi qu’un système régional de plis croisés d’origine transtensionnelle. À ces structures ductiles a succédé une phase de plissement de propagation de failles cassantes à ductiles à un plus haut niveau crustal, après que le complexe gneissique ait été exhumé et se soit refroidi. Prises ensemble, les données indiquent une extension post-pic sur la marge d’un complexe métamorphique à coeur de noyau exceptionnellement grand aux environs de 60 m.y. et dans laquelle la zone de détachement montre une épaisseur véritable d’environ 7 km. La grandeur de l’échelle du complexe métamorphique à coeur de noyau concorde avec le fort niveau d’érosion, et la grande durée de l’effondrement d’extension est compatible avec une croûte de double épaisseur au pic de métamorphisme, la présence de leucosomes abondants dans la croûte moyenne et d’une rétromorphose à flux fluidique généralisée, l’ensemble indiquant l’importance du rôle des complexes métamorphiques à coeur de noyau dans le refroidissement de la croûte après le pic de l’orogenèse grenvillienne.

2019 ◽  
Vol 132 (1-2) ◽  
pp. 198-214 ◽  
Author(s):  
Andrew S. Canada ◽  
Elizabeth J. Cassel ◽  
Daniel F. Stockli ◽  
M. Elliot Smith ◽  
Brian R. Jicha ◽  
...  

AbstractBasins in orogenic hinterlands are directly coupled to crustal thickening and extension through landscape processes and preserve records of deformation that are unavailable in footwall rocks. Following prolonged late Mesozoic–early Cenozoic crustal thickening and plateau construction, the hinterland of the Sevier orogen of western North America underwent late Cenozoic extension and formation of metamorphic core complexes. While the North American Cordillera is one of Earth’s best-studied orogens, estimates for the spatial and temporal patterns of initial extensional faulting differ greatly and thus limit understanding of potential drivers for deformation. We employed (U-Th)/(He-Pb) double dating of detrital zircon and (U-Th)/He thermochronology of detrital apatite from precisely dated Paleogene terrestrial strata to quantify the timing and magnitude of exhumation and explore the linkages between tectonic unroofing and basin evolution in northeastern Nevada. We determined sediment provenance and lag time evolution (i.e., the time between cooling and deposition, which is a measure of upper-crustal exhumation) during an 8 m.y. time span of deposition within the Eocene Elko Basin. Fluvial strata deposited between 49 and 45 Ma yielded Precambrian (U-Th)/He zircon cooling ages (ZHe) with 105–740 m.y. lag times dominated by unreset detrital ages, suggesting limited exhumation and Proterozoic through early Eocene sediment burial (<4–6 km) across the region. Minimum nonvolcanic detrital ZHe lag times decreased to <100 m.y. in 45–43 Ma strata and to <10 m.y. in 43–41 Ma strata, illustrating progressive and rapid hinterland unroofing in Eocene time. Detrital apatite (U-Th)/He ages present in ca. 44 and 39 Ma strata record Eocene cooling ages with 1–20 m.y. lag times. These data reflect acceleration of basement exhumation rates by >1 km/m.y., indicative of rapid, large-magnitude extensional faulting and metamorphic core complex formation. Contemporaneous with this acceleration of hinterland exhumation, syntectonic freshwater lakes developed in the hanging wall of the Ruby Mountains–East Humboldt Range metamorphic core complex at ca. 43 Ma. Volcanism driven by Farallon slab removal migrated southward across northeastern Nevada, resulting in voluminous rhyolitic eruptions at 41.5 and 40.1 Ma, and marking the abrupt end of fluvial and lacustrine deposition across much of the Elko Basin. Thermal and rheologic weakening of the lithosphere and/or partial slab removal likely initiated extensional deformation, rapidly unroofing deeper crustal levels. We attribute the observed acceleration in exhumation, expansion of sedimentary basins, and migrating volcanism across the middle Eocene to record the thermal and isostatic effects of Farallon slab rollback and subsequent removal of the lowermost mantle lithosphere.


1992 ◽  
Vol 29 (5) ◽  
pp. 972-983 ◽  
Author(s):  
R. M. Friedman

The Tatla Lake metamorphic complex (TLMC) is a metamorphic core complex located along the western edge of the Intermontane Belt in southwestern interior British Columbia. Low- to moderate-angle normal faults separate lower plate greenschist- and amphibolite-grade, highly strained, commonly mylonitic rocks from unstrained to weakly deformed strata of the upper plate. The lower plate is divided into a core of granoblastic gneiss and migmatitic tonalite and an overlying, 1–2.5+ km thick mylonitic package called the ductilely sheared assemblage (DSA). Amphibolite-grade metamorphism of the gneissic core (Mc) largely accompanied the development and folding of gneissic layering (ca. 107–79 Ma). Eocene (ca. 55–47 Ma) fabric and mineral assemblages in the DSA (Ms) obscure any earlier history. Three metamorphic zones are observed within southern DSA metapelites with increasing structural depth: chlorite–biotite, garnet–staurolite, and garnet–staurolite–kyanite–sillimanite. The middle zone is about 300 m thick; the latter zone is now about 4 km below low-grade upper plate rocks, indicating late- or post-Ds metamorphic omission. DSA P–T conditions are calculated with the garnet–biotite thermometer and garnet–Al2SiO5–quartz–plagioclase (GASP) and total Al in hornblende barometers. Southern DSA metapelites record Eocene Ms conditions of 480–619 °C (± 50 °C), generally increasing with depth. One sample gave a calculated P–T of 0.72 ± 0.15 GPa and 500 ± 50 °C. P–T data from this area suggest that up to 10 km of structural section may be missing. Zoned garnet (pre-Ds) core to rim GASP pressures of 0.70–0.36 ± 0.15 GPa, for an outcrop-sized pelitic xenolith within a Late Cretaceous tonalitic body (U–Pb: 71 Ma) in the northwestern DSA, record its ascent during pluton emplacement and subsequent Eocene tectonic uplift. A total Al in hornblende crystallization pressure of 0.54 ± 0.1 GPa was calculated for the surrounding body. Biotite and hornblende K–Ar dates of 53.4–45.6 Ma for DSA and gneissic core rocks record cooling of the lower plate through the 530–280 °C (± 40 °C) interval. Mc metamorphism in the gneissic core is thought to have developed in response to crustal thickening and compression, beneath a regional mid-Cretaceous thrust belt. Characteristics of Eocene Ms metamorphism in the DSA, such as truncated and thinned metamorphic zones, are consistent with development during extensional tectonic exhumation of the lower plate.


2018 ◽  
Vol 55 (6) ◽  
pp. 545-570 ◽  
Author(s):  
Barun Maity ◽  
Aphrodite Indares

The late Paleoproterozoic to Mesoproterozoic (ca. 1.7–1.2 Ga) evolution of the active southeastern margin of Laurentia terminated with the Grenvillian continental collision and the development of a large, hot, long-duration orogen at ca. 1.09–0.98 Ga. As a result, much of the hinterland of the Grenville Province consists of Paleoproterozoic and Mesoproterozoic rocks, mostly preserved as an imbricate stack of high-grade gneisses, that represent a potential repository of active-margin processes. This study presents geochronologic, geochemical, and isotopic analyses of two granulite-facies suites of ca. 1.45–1.40 Ga mafic tholeiites from the Canyon domain (Manicouagan area, central Grenville Province). One suite consists of 1439 +76/–68 Ma high-FeTi mafic sills with εNd values of –0.4 (TDM 2.57–2.72 Ga), indicate derivation from variably depleted to enriched MORB-type mantle sources, probably in an extensional back-arc setting, before intrusion in a ca. 1.5 Ga supracrustal metasedimentary sequence. The other, previously dated, 1410 ± 16 Ma Mafic to intermediate unit exhibits εNd values of 0.0 to +0.9 (TDM 2.02–2.25 Ga), and variably enriched MORB to arc geochemical signatures, for which formation in a transitional back-arc to arc setting is suggested. Integrated with published information, the new data support a model of a long-lived continental-margin arc and intermittent back-arc development on southeast Laurentia during the mid-Mesoproterozoic (ca. 1.5–1.4 Ga), in which repeated short periods of extension and crustal thinning in the back-arc or intra-arc regions were followed by compression and crustal thickening.


Geosphere ◽  
2021 ◽  
Author(s):  
Andrew V. Zuza ◽  
Christopher D. Henry ◽  
Seth Dee ◽  
Charles H. Thorman ◽  
Matthew T. Heizler

The Ruby Mountains–East Humboldt Range–Wood Hills–Pequop Mountains (REWP) metamorphic core complex, northeast Nevada, exposes a record of Mesozoic contraction and Cenozoic extension in the hinterland of the North American Cordillera. The timing, magnitude, and style of crustal thickening and succeeding crustal thinning have long been debated. The Pequop Mountains, comprising Neoproterozoic through Triassic strata, are the least deformed part of this composite metamorphic core complex, compared to the migmatitic and mylonitized ranges to the west, and provide the clearest field relationships for the Mesozoic–Cenozoic tectonic evolution. New field, structural, geochronologic, and thermochronological observations based on 1:24,000-scale geologic mapping of the northern Pequop Mountains provide insights into the multi-stage tectonic history of the REWP. Polyphase cooling and reheating of the middle-upper crust was tracked over the range of <100 °C to 450 °C via novel 40Ar/39Ar multi-diffusion domain modeling of muscovite and K-feldspar and apatite fission-track dating. Important new observations and interpretations include: (1) crosscutting field relationships show that most of the contractional deformation in this region occurred just prior to, or during, the Middle-Late Jurassic Elko orogeny (ca. 170–157 Ma), with negligible Cretaceous shortening; (2) temperature-depth data rule out deep burial of Paleozoic stratigraphy, thus refuting models that incorporate large cryptic overthrust sheets; (3) Jurassic, Cretaceous, and Eocene intrusions and associated thermal pulses metamorphosed the lower Paleozoic–Proterozoic rocks, and various thermochronometers record conductive cooling near original stratigraphic depths; (4) east-draining paleovalleys with ~1–1.5 km relief incised the region before ca. 41 Ma and were filled by 41–39.5 Ma volcanic rocks; and (5) low-angle normal faulting initiated after the Eocene, possibly as early as the late Oligocene, although basin-generating extension from high-angle normal faulting began in the middle Miocene. Observed Jurassic shortening is coeval with structures in the Luning-Fencemaker thrust belt to the west, and other strain documented across central-east Nevada and Utah, suggesting ~100 km Middle-Late Jurassic shortening across the Sierra Nevada retroarc. This phase of deformation correlates with terrane accretion in the Sierran forearc, increased North American–Farallon convergence rates, and enhanced Jurassic Sierran arc magmatism. Although spatially variable, the Cordilleran hinterland and the high plateau that developed across it (i.e., the hypothesized Nevadaplano) involved a dynamic pulsed evolution with significant phases of both Middle-Late Jurassic and Late Cretaceous contractional deformation. Collapse long postdated all of this contraction. This complex geologic history set the stage for the Carlin-type gold deposit at Long Canyon, located along the eastern flank of the Pequop Mountains, and may provide important clues for future exploration.


2019 ◽  
Vol 132 (1-2) ◽  
pp. 149-197 ◽  
Author(s):  
Thomas N. Lamont ◽  
Michael P. Searle ◽  
David J. Waters ◽  
Nick M.W. Roberts ◽  
Richard M. Palin ◽  
...  

Abstract The island of Naxos, Greece, has been previously considered to represent a Cordilleran-style metamorphic core complex that formed during Cenozoic extension of the Aegean Sea. Although lithospheric extension has undoubtedly occurred in the region since 10 Ma, the geodynamic history of older, regional-scale, kyanite- and sillimanite-grade metamorphic rocks exposed within the core of the Naxos dome is controversial. Specifically, little is known about the pre-extensional prograde evolution and the relative timing of peak metamorphism in relation to the onset of extension. In this work, new structural mapping is presented and integrated with petrographic analyses and phase equilibrium modeling of blueschists, kyanite gneisses, and anatectic sillimanite migmatites. The kyanite-sillimanite–grade rocks within the core complex record a complex history of burial and compression and did not form under crustal extension. Deformation and metamorphism were diachronous and advanced down the structural section, resulting in the juxtaposition of several distinct tectono-stratigraphic nappes that experienced contrasting metamorphic histories. The Cycladic Blueschists attained ∼14.5 kbar and 470 °C during attempted northeast-directed subduction of the continental margin. These were subsequently thrusted onto the more proximal continental margin, resulting in crustal thickening and regional metamorphism associated with kyanite-grade conditions of ∼10 kbar and 600–670 °C. With continued shortening, the deepest structural levels underwent kyanite-grade hydrous melting at ∼8–10 kbar and 680–750 °C, followed by isothermal decompression through the muscovite dehydration melting reaction to sillimanite-grade conditions of ∼5–6 kbar and 730 °C. This decompression process was associated with top-to-the-NNE shearing along passive-roof faults that formed because of SW-directed extrusion. These shear zones predated crustal extension, because they are folded around the migmatite dome and are crosscut by leucogranites and low-angle normal faults. The migmatite dome formed at lower-pressure conditions under horizontal constriction that caused vertical boudinage and upright isoclinal folds. The switch from compression to extension occurred immediately following doming and was associated with NNE-SSW horizontal boudinage and top-to-the-NNE brittle-ductile normal faults that truncate the internal shear zones and earlier collisional features. The Naxos metamorphic core complex is interpreted to have formed via crustal thickening, regional metamorphism, and partial melting in a compressional setting, here termed the Aegean orogeny, and it was exhumed from the midcrust due to the switch from compression to extension at ca. 15 Ma.


Author(s):  
Fábio Martins ◽  
M. Rosário Azevedo ◽  
Beatriz Valle Aguado ◽  
Elisa P. Gomes ◽  
Colombo Tassinari ◽  
...  

ABSTRACT The Variscan Bemposta Migmatite Complex (BMC) in northern Portugal (Central Iberian Zone) is a NE–SW-trending high-grade metamorphic core complex comprising upper-amphibolite- to lower-granulite-facies metapelites and metagreywackes of Ediacaran-Cambrian age and subordinate Ordovician orthogneisses showing evidence of intense migmatization. The available petrological data indicate that these rocks attained peak metamorphic conditions at the end of the first Variscan contractional deformation event (D1), followed an isothermal decompression path during D2 crustal extension, and underwent subsequent retrogression during D3 shearing. The whole BMC complex hosts numerous concordant intrusive bodies (sheets several meters thick) of syn-D2 two-mica granites, genetically linked to the leucosomes, suggesting that the emplacement of these magmas was synchronous with core complex extension. U-Pb SHRIMP ages obtained from zircons from one of these syn-D2 tabular plutons (the Faia d'Água Alta granite) yielded a crystallization age of 324 ± 3 Ma, providing a good estimate for the age of the D2 anatectic event in the region.


2021 ◽  
pp. jgs2020-123
Author(s):  
Masoumeh Soleimani ◽  
Ali Faghih ◽  
Timothy Kusky

The Boneh Shurow metamorphic core complex (BSMCC) in the Central East Iranian Microcontinent (CEIM) provides a good example of the Mesozoic succession of nonsynchronous compressional and extensional deformation events attributed to the transitional Cimmerian events. The D1 compression developed subvertical dextral ductile shear zones and corresponds to continental accretion and crustal thickening producing kyanite- and sillimanite-grade rocks and migmatites in the Early Cimmerian orogeny in the CEIM. The D2 deformation event is marked by extension during the mid-Cimmerian orogeny. It is characterized by top-to-the-NE normal sense of shear along a low angle detachment surface. Field evidence for cross cutting relationships of D1- by D2-related structures reveal that the occurrence of Barrovian facies metamorphism and associated partial melting in the core of BSMCC formed during compressional tectonic events. These structures formed before the initiation of extension and the formation of the low-angle detachment shear zone. Finally, during the Late Cimmerian D3 event, the east and west Boneh Shurow reverse faults ruptured on both sides of the MCC. Recognition of the complicated origin and exhumation mechanisms of the BSMCC provide crucial constraints on the prolonged evolution of Paleo- and Neo-Tethys ocean basins and collisional and post-collisional events in this region.


Sign in / Sign up

Export Citation Format

Share Document