scholarly journals A case study on optimal location modeling of battery swapping & charging facility for the electric bus system

Author(s):  
Kim Seung-Ji ◽  
◽  
Kim Wonkyu ◽  
Kim Byung Jong ◽  
Im Hyun Seop
2021 ◽  
pp. 0958305X2110168
Author(s):  
Bwo-Ren Ke ◽  
Shyang-Chyuan Fang ◽  
Jun-Hong Lai

As a response to the worldwide problems of global warming and environmental pollution, electric vehicles have become the main direction of development in the automobile industry. Taking the bus system of Penghu Islands as the subject, this study explores the switching of all the original diesel buses to electric buses, and it adjusts the departure time of all the buses, with the purpose of reducing the costs of the construction and electricity used in an electric bus system. Plug-in and battery-swapping buses are used as examples in the study, and the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO) and Simulate Anneal Arithmetic (SA) algorithms, as well as an algorithm that combines the above, is used to optimize the departure times, in order not to affect the volumes and passenger demands in units of five minutes, the shift starts within the range of 15 minutes before or after the scheduled time. After each new schedule is prepared, batteries are used to optimize the daytime charging schedule of electric buses, to ensure the lowest cost of each new schedule. The results show that, regardless of which algorithm is used to optimize the departure time, all the minimum costs are lower than the best results before the adjustment, especially for the PSO-GA algorithm. Hence, the proper adjustment of the departure time can really reduce the construction and electricity costs and carbon emissions of the electric bus system.


Author(s):  
Mauro Felipe Berumen Calderón ◽  
Damayanti Estolano Cristerna ◽  
Angelica Selene Sterling Zozoaga ◽  
Andreé Ricardo Berumen Calderón

Author(s):  
Lino J. Alvarez-Vázquez ◽  
Aurea Martínez ◽  
Miguel E. Vázquez-Méndez ◽  
A. W. Pollak ◽  
J. Jeffrey Peirce
Keyword(s):  

Author(s):  
Aleksander PURBA ◽  
Fumihiko NAKAMURA ◽  
Shinji TANAKA ◽  
Peamsook SANIT ◽  
Ryo ARIYOSHI
Keyword(s):  

2011 ◽  
Vol 411 ◽  
pp. 388-392 ◽  
Author(s):  
Yun Long Li ◽  
Jian Min Gao ◽  
Lei Shi ◽  
Song Wang

In order to improve the efficiency of assembly modeling and provide a complete assembly model for assembly sequence planning (ASP), a method of assembly modeling based on polychromatic sets (PS) is proposed. Firstly, the assembly information of 3D Component is obtained by API function in SolidWorks. In addition, assembly incident matrix, information matrix and mapping matrix are built. On the basis of these matrixes, a method of location modeling is explored. The interference relation matrix is developed by judging the spatial location and analyzing dynamic interference relation among parts. Finally, a case study is given to verify the method.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2306 ◽  
Author(s):  
Christos Vlachokostas ◽  
Charisios Achillas ◽  
Ioannis Agnantiaris ◽  
Alexandra V. Michailidou ◽  
Christos Pallas ◽  
...  

Lately, the model of circular economy has gained worldwide interest. Within its concept, waste is viewed as a beneficial resource that needs to be re-introduced in the supply chains, which also requires the use of raw materials, energy, and water to be minimized. Undeniably, a strong link exists between the bioeconomy, circular economy, bioproducts, and bioenergy. In this light, in order to promote a circular economy, a range of alternative options and technologies for biowaste exploitation are currently available. In this paper, we propose a generic methodological scheme for the development of small, medium, or large-scale units of alternative biowaste treatment, with an emphasis on the production of bioenergy and other bioproducts. With the use of multi-criteria decision analysis, the model simultaneously considers environmental, economic, and social criteria to support robust decision-making. In order to validate the methodology, the latter was demonstrated in a real-world case study for the development of a facility in the region of Serres, Greece. Based on the proposed methodological scheme, the optimal location of the facility was selected, based on its excellent assessment in criteria related to environmental performance, financial considerations, and local acceptance. Moreover, anaerobic digestion of agricultural residues, together with farming and livestock wastes, was recommended in order to produce bioenergy and bioproducts.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Sina Torabi ◽  
Mauro Bellone ◽  
Mattias Wahde

Abstract Background and methods This paper addresses, in simulation, energy minimization of an autonomous electric minibus operating in an urban environment. Two different case studies have been considered, each involving a total of 10 different 2?km bus routes and two different average speeds. In the proposed method, the minibus follows an optimized speed profile, generated using a genetic algorithm. Results In the first case study the vehicle was able to reduce its energy consumption by around 7 to 12% relative to a baseline case in which it maintains a constant speed between stops, with short acceleration and deceleration phases. In the second case study, involving mass variation (passengers entering and alighting) it was demonstrated that the number of round trips that can be completed on a single battery charge is increased by around 10% using the proposed method.


Sign in / Sign up

Export Citation Format

Share Document