Catenary-free electric bus system and distribution networks: An Italian case study

Author(s):  
Claudio Carlini ◽  
Diana Moneta
Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 330 ◽  
Author(s):  
Enrico Creaco ◽  
Giacomo Galuppini ◽  
Alberto Campisano ◽  
Carlo Ciaponi ◽  
Giuseppe Pezzinga

This paper proposes the bi-objective optimization for the installation of pumps operating as turbines (PATs) in systems of transmission mains, which typically operate at steady flow conditions to cater to tanks in the service of water distribution networks. The methodology aims to find optimal solutions in the trade-off between installation costs and generated hydropower, which are to be minimized and maximized, respectively. While the bi-objective optimization is carried out by means of a genetic algorithm, an inner optimization sub-algorithm provides for the regulation of PAT settings. The applications concerned a real Italian case study, made up of nine systems of transmission mains. The methodology proved able to thoroughly explore the trade-off between the two objective functions, offering solutions able to recover hydropower up to 83 KW. In each system considered, the optimal solutions obtained were postprocessed in terms of long-life net profit. Due to the large geodesic elevation variations available in the case study, this analysis showed that, in all systems, the optimal solution with the highest value of generated hydropower was the most profitable under usual economic scenarios, with payback periods always lower than 3 years.


2021 ◽  
pp. 0958305X2110168
Author(s):  
Bwo-Ren Ke ◽  
Shyang-Chyuan Fang ◽  
Jun-Hong Lai

As a response to the worldwide problems of global warming and environmental pollution, electric vehicles have become the main direction of development in the automobile industry. Taking the bus system of Penghu Islands as the subject, this study explores the switching of all the original diesel buses to electric buses, and it adjusts the departure time of all the buses, with the purpose of reducing the costs of the construction and electricity used in an electric bus system. Plug-in and battery-swapping buses are used as examples in the study, and the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO) and Simulate Anneal Arithmetic (SA) algorithms, as well as an algorithm that combines the above, is used to optimize the departure times, in order not to affect the volumes and passenger demands in units of five minutes, the shift starts within the range of 15 minutes before or after the scheduled time. After each new schedule is prepared, batteries are used to optimize the daytime charging schedule of electric buses, to ensure the lowest cost of each new schedule. The results show that, regardless of which algorithm is used to optimize the departure time, all the minimum costs are lower than the best results before the adjustment, especially for the PSO-GA algorithm. Hence, the proper adjustment of the departure time can really reduce the construction and electricity costs and carbon emissions of the electric bus system.


Author(s):  
Nguyen Thu Ha ◽  
Nguyen Thi Thanh Huyen

The retail market in Vietnam continues to grow with the entry of foreign retail brands and the strong rise of domestic businesses in expanding distribution networks and conquering consumer confidence. The appearance of more retail brands has created a fiercely competitive market. Based on the outcomes of previous research results on brand choice intention combined with a customer survey, the paper proposes an analytical framework and scales to examine the relationship of five elements including store image, price perception, risk perception, brand attitudes, brand awareness and retail brand choice intention with a case study of the Hanoi-based Circle K convenience store chain. These five elements are the precondition for retail businesses to develop their brands so as to attract customers.


Author(s):  
Maria Ricciardi ◽  
Concetta Pironti ◽  
Oriana Motta ◽  
Rosa Fiorillo ◽  
Federica Camin ◽  
...  

AbstractIn this paper, we analysed the efflorescences present in the frescos of a monumental complex named S. Pietro a Corte situated in the historic centre of Salerno (Campania, Italy). The groundwater of the historic centre is fed by two important streams (the Rafastia and the Fusandola) that can be the sources of water penetration. The aims of this work are to (i) identify the stream that reaches the ancient frigidarium of S. Pietro a Corte and (ii) characterize the efflorescences on damaged frescos in terms of chemical nature and sources. In order to accomplish the first aim, the water of the Rafastia river (7 samples) and the water of the Fusandola river (7 samples) were analysed and compared with the water of a well of the Church (7 samples). The ionic chromatography measurements on the water samples allowed us to identify the Rafastia as the river that feeds the ancient frigidarium of S. Pietro a Corte. To investigate the nature and the origin of the efflorescences (our second aim), anionic chromatography analyses, X-ray diffraction measurements, and the isotopic determination of nitrogen were performed on the efflorescences (9 samples) and the salts recovered from the well (6 samples). Results of these analyses show that efflorescences are mainly made of potassium nitrate with a δ15N value of + 9.3 ± 0.2‰. Consequently, a plausible explanation for their formation could be the permeation of sewage water on the walls of the monumental complex.


2021 ◽  
Vol 23 ◽  
pp. 100136
Author(s):  
Martino Trevisan ◽  
Luca Vassio ◽  
Danilo Giordano

Author(s):  
Aly-Joy Ulusoy ◽  
Filippo Pecci ◽  
Ivan Stoianov

AbstractThis manuscript investigates the design-for-control (DfC) problem of minimizing pressure induced leakage and maximizing resilience in existing water distribution networks. The problem consists in simultaneously selecting locations for the installation of new valves and/or pipes, and optimizing valve control settings. This results in a challenging optimization problem belonging to the class of non-convex bi-objective mixed-integer non-linear programs (BOMINLP). In this manuscript, we propose and investigate a method to approximate the non-dominated set of the DfC problem with guarantees of global non-dominance. The BOMINLP is first scalarized using the method of $$\epsilon $$ ϵ -constraints. Feasible solutions with global optimality bounds are then computed for the resulting sequence of single-objective mixed-integer non-linear programs, using a tailored spatial branch-and-bound (sBB) method. In particular, we propose an equivalent reformulation of the non-linear resilience objective function to enable the computation of global optimality bounds. We show that our approach returns a set of potentially non-dominated solutions along with guarantees of their non-dominance in the form of a superset of the true non-dominated set of the BOMINLP. Finally, we evaluate the method on two case study networks and show that the tailored sBB method outperforms state-of-the-art global optimization solvers.


2009 ◽  
Vol 8 (sup2) ◽  
pp. 528-530 ◽  
Author(s):  
Mariano Pauselli ◽  
Luciano Morbidini ◽  
Emiliano Lasagna ◽  
Vincenzo Landi ◽  
Roberto Giangrande

Sign in / Sign up

Export Citation Format

Share Document