Development of Integrated Traffic Control of Dynamic Merge and Lane Change at Freeway Work Zones in a Connected and Automated Vehicle Environment

Author(s):  
Yongju Kim ◽  
◽  
Dongju Ka ◽  
Sunho Kim ◽  
Chungwon Lee
2016 ◽  
Vol 15 ◽  
pp. 233-244 ◽  
Author(s):  
Nina von der Heiden ◽  
Justin Geistefeldt

Author(s):  
Daniel J. Melcher ◽  
Rachel E. Keller

Incidents or collisions involving pedestrians, bicyclists, motorcycles, automobiles, heavy trucks, or tractor-trailers frequently occur in roadway or roadside areas affected by highway construction projects. When such events arise, the ensuing claims or litigation processes often concern whether or not the temporary traffic control (TTC) system in place at the time was compliant with the applicable standard of care. Due to the short-term and constantly changing nature of construction projects and work zones, the hardest challenge for the forensicengineer is often to determine what was in place at the time and location of the incident. This paper will introduce and expound on the application of modern technology solutions to address these questions. Methods for extraction of useful information from the raw data will be addressed, along with examples demonstrating the engineering application of this data to the underlying legal questions.


Author(s):  
Kristin Kersavage ◽  
Nicholas P. Skinner ◽  
John D. Bullough ◽  
Philip M. Garvey ◽  
Eric T. Donnell ◽  
...  

Flashing yellow warning lights notify drivers about the presence of work along the road. Current standards for these lights address performance of the individual light but not how lights should function when multiple lights are used. In the present study, warning lights were used to delineate a lane change taper in a simulated work zone. Lights flashed with varying intensities and either randomly or in sequence, with lights flashing in turn along the length of the lane change taper, either to the right or to the left. In half of the trials, a flashing police light bar was used on a vehicle located within the simulated work zone. Participants were asked to drive a vehicle approaching the work zone and to identify, as quickly as possible, in which direction the taper’s lane change was (either to the right or left). Drivers were able to correctly identify the taper from farther away when the lights flashed in a sequential pattern than when the flash pattern was random; and the presence of a police light bar resulted in shorter identification distances. The results, along with previous research, can inform standards for the use of flashing lights and police lights in work zones for the safety of drivers and workers.


2017 ◽  
Vol 2622 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Da Yang ◽  
Xiaoping Qiu ◽  
Lina Ma ◽  
Danhong Wu ◽  
Liling Zhu ◽  
...  

In recent years, automated vehicles have been developing rapidly, and some automated vehicles have begun to drive on highways. The market share of automated vehicles is expected to increase and will greatly affect traffic flow characteristics. This paper focuses on the mixed traffic flow of manual and automated vehicles. The study improves the existing cellular automaton model to capture the differences between manual vehicles and automated vehicles. Computer simulations are employed to analyze the characteristic variations in the mixed traffic flow under different automated vehicle proportions, lane change probabilities, and reaction times. Several new conclusions are drawn in the paper. First, with the increment of the proportion of automated vehicles, freeway capacity increases; the capacity increment is more significant for single-lane traffic than for two-lane traffic. Second, for single-lane traffic flow, reducing the reaction time of the automated vehicle can significantly improve road traffic capacity—as much as doubling it—and reaction time reduction has no obvious effect on the capacity of the two-lane traffic. Third, with the proportion increment of automated vehicles, lane change frequency reduces significantly. Fourth, when the density is 15 < ρ < 55 vehicles/km, the addition of 20% automated vehicles to a traffic flow that consisted of only manual vehicles can decrease congestion by up to 16.7%.


Author(s):  
Andrew G. Beacher ◽  
Michael D. Fontaine ◽  
Nicholas J. Garber

The traffic control strategy of the late merge in work zones was devised to improve flow and safety at work zone lane closures. Although some states have put the strategy into practice, only a handful of short-term field studies have formally evaluated its effectiveness. Additional field studies were necessary to assess the efficacy of the strategy and its proper deployment. This paper documents the results of a field test of the late merge traffic control conducted over several months. The late merge strategy was evaluated by comparing its effectiveness with that of traditional plans for work zone lane closures. The field test was conducted on a primary route in Tappahannock, Virginia, at a two-to-one lane closure. Results showed that throughput increased, but the increase was not statistically significant. Likewise, time in queue decreased, but the decrease was not statistically significant. These results were much less dramatic than those of other studies. Possible reasons for this disparity include different driver populations, road types, vehicle mixes, and site-specific characteristics. Despite limited improvements in throughput and time in queue, more drivers were in the closed lane, a positive response to the late merge signs.


Sign in / Sign up

Export Citation Format

Share Document