أثر استخدام إستراتيجيتي التعلم المدمج وحل المشكلات في تنمية مهارات استخدام تطبيقات الحوسبة السحابية في البحث العلمي لدى طلاب الدراسات العليا = The Effects of Using the Blended-Learning and Problem-Solving Strategies to Development Graduate Student's Skills of Use the Cloud Computing Applications in Scientific Research

Author(s):  
أشرف رجب عطا علي
Author(s):  
J. Navaneetha Krishnan ◽  
P. Paul Devanesan

The major aim of teaching Mathematics is to develop problem solving skill among the students. This article aims to find out the problem solving strategies and to test the students’ ability in using these strategies to solve problems. Using sample survey method, four hundred students were taken for this investigation. Students’ achievement in solving problems was tested for their Identification and Application of Problem Solving Strategies as a major finding, thirty one percent of the students’ achievement in mathematics is contributed by Identification and Application of Problem Solving Strategies.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yang Jiang ◽  
Tao Gong ◽  
Luis E. Saldivia ◽  
Gabrielle Cayton-Hodges ◽  
Christopher Agard

AbstractIn 2017, the mathematics assessments that are part of the National Assessment of Educational Progress (NAEP) program underwent a transformation shifting the administration from paper-and-pencil formats to digitally-based assessments (DBA). This shift introduced new interactive item types that bring rich process data and tremendous opportunities to study the cognitive and behavioral processes that underlie test-takers’ performances in ways that are not otherwise possible with the response data alone. In this exploratory study, we investigated the problem-solving processes and strategies applied by the nation’s fourth and eighth graders by analyzing the process data collected during their interactions with two technology-enhanced drag-and-drop items (one item for each grade) included in the first digital operational administration of the NAEP’s mathematics assessments. Results from this research revealed how test-takers who achieved different levels of accuracy on the items engaged in various cognitive and metacognitive processes (e.g., in terms of their time allocation, answer change behaviors, and problem-solving strategies), providing insights into the common mathematical misconceptions that fourth- and eighth-grade students held and the steps where they may have struggled during their solution process. Implications of the findings for educational assessment design and limitations of this research are also discussed.


Author(s):  
Xieling Chen ◽  
Di Zou ◽  
Haoran Xie ◽  
Fu Lee Wang

AbstractInnovative information and communication technologies have reformed higher education from the traditional way to smart learning. Smart learning applies technological and social developments and facilitates effective personalized learning with innovative technologies, especially smart devices and online technologies. Smart learning has attracted increasing research interest from the academia. This study aims to comprehensively review the research field of smart learning by conducting a topic modeling analysis of 555 smart learning publications collected from the Scopus database. In particular, it seeks answers to (1) what the major research topics concerning smart learning were, and (2) how these topics evolved. Results demonstrate several major research issues, for example, Interactive and multimedia learning, STEM (science, technology, engineering, and mathematics) education, Attendance and attention recognition, Blended learning for smart learning, and Affective and biometric computing. Furthermore, several emerging topics were identified, for example, Smart learning analytics, Software engineering for e-learning systems, IoT (Internet of things) and cloud computing, and STEM education. Additionally, potential inter-topic directions were highlighted, for instance, Attendance and attention recognition and IoT and cloud computing, Semantics and ontology and Mobile learning, Feedback and assessment and MOOCs (massive open online courses) and course content management, as well as Blended learning for smart learning and Ecosystem and ambient intelligence.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 793
Author(s):  
Manuel Santos-Trigo ◽  
Fernando Barrera-Mora ◽  
Matías Camacho-Machín

This study aims to document the extent to which the use of digital technology enhances and extends high school teachers’ problem-solving strategies when framing their teaching scenarios. The participants systematically relied on online developments such as Wikipedia to contextualize problem statements or to review involved concepts. Likewise, they activated GeoGebra’s affordances to construct and explore dynamic models of tasks. The Apollonius problem is used to illustrate and discuss how the participants contextualized the task and relied on technology affordances to construct and explore problems’ dynamic models. As a result, they exhibited and extended the domain of several problem-solving strategies including the use of simpler cases, dragging orderly objects, measuring objects attributes, and finding loci of some objects that shaped their approached to reasoning and solve problems.


2016 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Jackson Pasini Mairing

Solving problem is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe the thinking process of naive problem solvers based on heuristic of Polya. The researcher gave two problems to students at grade XI from one of high schools in Palangka Raya, Indonesia. The research subjects were two students with problem solving scores of 0 or 1 for both problems (naive problem solvers). The score was determined by using a holistic rubric with maximum score of 4. Each subject was interviewed by the researcher separately based on the subject’s solution. The results showed that the naive problem solvers read the problems for several times in order to understand them. The naive problem solvers could determine the known and the unknown if they were written in the problems. However, they faced difficulties when the information in the problems should be processed in their mindsto construct a mental image. The naive problem solvers were also failed to make an appropriate plan because they did not have a problem solving schema. The schema was constructed by the understanding of the problems, conceptual and procedural knowledge of the relevant concepts, knowledge of problem solving strategies, and previous experiences in solving isomorphic problems.


Sign in / Sign up

Export Citation Format

Share Document