scholarly journals Spatio-Temporal Pricing for Ridesharing Platforms

2021 ◽  
Author(s):  
Hongyao Ma ◽  
Fei Fang ◽  
David C. Parkes

Ridesharing platforms have radically changed the way people get around in urban areas, but there remain challenges undercutting the mission of “making transportation as reliable as running water.” A particular concern is that drivers strategize: calling riders to find out their destinations and canceling trips that are not worthwhile, declining trips and chasing surge prices in neighboring areas, and going off-line before large events will end in anticipation of a price increase. In this work, we show that such strategic behaviors are symptoms of inefficiencies in the pricing and dispatching rules governing today's platforms. We propose the Spatio-Temporal Pricing mechanism, which solves for the welfare-optimal matching of drivers to trips, and sets prices that are appropriately smooth in both space and time such that the best thing for drivers to do is accept any proposed trip dispatch. This demonstrates that ridesharing platforms can succeed in optimally orchestrating trips and providing reliable transpiration for riders, while still leaving drivers with the flexibility to decide how to work.

2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Lennart Adenaw ◽  
Markus Lienkamp

In order to electrify the transport sector, scores of charging stations are needed to incentivize people to buy electric vehicles. In urban areas with a high charging demand and little space, decision-makers are in need of planning tools that enable them to efficiently allocate financial and organizational resources to the promotion of electromobility. As with many other city planning tasks, simulations foster successful decision-making. This article presents a novel agent-based simulation framework for urban electromobility aimed at the analysis of charging station utilization and user behavior. The approach presented here employs a novel co-evolutionary learning model for adaptive charging behavior. The simulation framework is tested and verified by means of a case study conducted in the city of Munich. The case study shows that the presented approach realistically reproduces charging behavior and spatio-temporal charger utilization.


2020 ◽  
Vol 13 (1) ◽  
pp. 112
Author(s):  
Helai Huang ◽  
Jialing Wu ◽  
Fang Liu ◽  
Yiwei Wang

Accessibility has attracted wide interest from urban planners and transportation engineers. It is an important indicator to support the development of sustainable policies for transportation systems in major events, such as the COVID-19 pandemic. Taxis are a vital travel mode in urban areas that provide door-to-door services for individuals to perform urban activities. This study, with taxi trajectory data, proposes an improved method to evaluate dynamic accessibility depending on traditional location-based measures. A new impedance function is introduced by taking characteristics of the taxi system into account, such as passenger waiting time and the taxi fare rule. An improved attraction function is formulated by considering dynamic availability intensity. Besides, we generate five accessibility scenarios containing different indicators to compare the variation of accessibility. A case study is conducted with the data from Shenzhen, China. The results show that the proposed method found reduced urban accessibility, but with a higher value in southern center areas during the evening peak period due to short passenger waiting time and high destination attractiveness. Each spatio-temporal indicator has an influence on the variation in accessibility.


2021 ◽  
Author(s):  
Micha Eisele ◽  
Maximilian Graf ◽  
Abbas El Hachem ◽  
Jochen Seidel ◽  
Christian Chwala ◽  
...  

<p>Precipitation - highly variable in space and time - is the most important input for many hydrological models. As these models become more and more detailed in space and time, high-resolution input data are required. Especially for modeling and prediction in fast reacting catchments, such as urban catchment areas, a higher space-time resolution is needed than the current ground measurement networks operated by national weather services usually provide. With the increasing number and availability of opportunistic sensors such as commercial microwave links (CMLs) and personal weather stations (PWS) in recent years, new opportunities for measuring meteorological data are emerging.</p><p>We developed a geostatistical interpolation framework which allows a combination of different opportunistic sensors and their specific features and geometric properties, e.g. point and line information. In this framework, a combined kriging approach is introduced, taking into account not only the point information of a reliable primary network, e.g., from national weather services, but also the higher uncertainty of the PWS- and CML-based precipitation. The path-averaged information of the CMLs is included through a block kriging-type approach.</p><p>The methodology was applied for two 7-months periods in Germany using an hourly temporal and a 1x1 km spatial resolution. By incorporating CMLs and PWS, the Pearson correlation could be increased from 0.56 to 0.73 compared to using only primary network for interpolation. The resulting precipitation maps also provided good agreement compared to gauge adjusted radar products.</p>


2020 ◽  
Author(s):  
Qifang Bi ◽  
Derek AT Cummings ◽  
Nicholas G. Reich ◽  
Lindsay T. Keegan ◽  
Joshua Kaminsky ◽  
...  

AbstractIn Southeast Asia, endemic dengue follows strong spatio-temporal patterns with major epidemics occurring every 2-5 years. However, important spatio-temporal variation in seasonal dengue epidemics remains poorly understood. Using 13 years (2003-2015) of dengue surveillance data from 926 districts in Thailand and wavelet analysis, we show that rural epidemics lead urban epidemics within a dengue season, both nationally and within health regions. However, local dengue fade-outs are more likely in rural areas than in urban areas during the off season, suggesting rural areas are not the source of viral dispersion. Simple dynamic models show that stronger seasonal forcing in rural areas could explain the inconsistency between earlier rural epidemics and dengue “over wintering” in urban areas. These results add important nuance to earlier work showing the importance of urban areas in driving multi-annual patterns of dengue incidence in Thailand. Feedback between geographically linked locations with markedly different ecology is key to explaining full disease dynamics across urban-rural gradient.


2021 ◽  
Vol 9 (3) ◽  
pp. 255
Author(s):  
Muhammad Zaini ◽  
Riyadi Riyadi

The low business capacity of SMEs is the result of the majority of SMEs (93.33%) still being managed traditionally. The limited capacity of SMEs can be overcome if SMEs are willing and able to change the way their business is managed, which is still traditionally replaced with web-based information technology, which is able to manage business and transaction processing without limits on space and time, such as the Prestashop back office application system. This application provides 2 types of modules, namely Back Office which consists of purchasing, sales, inventory, cash and bank modules, Front Office which functions as cash sales, so it is very easy to use by SMEs.


2020 ◽  
Vol 5 (2) ◽  
pp. 262-279 ◽  
Author(s):  
Antoine Vialle ◽  
Mario Giampieri

Current trends of spatial planning policies give a strategic role to soils, the multifunctionality of which must be considered as a crucial driver facing cities’ forthcoming social-ecological transition. However, soils within urban areas are insufficiently studied as a long-term record of environmental history and heavy anthropization. This article investigates the extreme qualitative variability of urban soils by presenting a conceptual model and cartographic workflow highlighting soil evolution processes as a value which co-variates with urbanization. Based on a case study in West Lausanne (Switzerland), the layers and map series of an atlas underscore the applicability of different types of information and spatial analysis for documenting the influence of anthrosediments and land cover changes. Combined with empirical profile descriptions, such a consolidated concept map defines a template, in the form of a complex spatio-temporal figure, on which to apply the state factor approach. Instead of using a simple spatial transect or gradient, the increasing anthropic dominance over original landscape conditions is explained using a section through time. An urban anthroposequence consequently retraces contrasting soil development pathways as a coherent bundle of historical trajectories. Such a narrative integrates various facets of land use, including one-off construction techniques and recurring maintenance practices, planning tools, and morphologies, into a specific ‘project for the ground’ which brought forth the mixed mesh of the Swiss Plateau ‘cityterritory.’ Ultimately, the dynamic vision conveyed by these intertwined soil–urbanization coevolution trajectories outlines opportunities for the regeneration of the resource deposit made up of both West Lausanne’s urban fabric and its soils as a palimpsest.


2015 ◽  
Vol 7 (6) ◽  
pp. 1196
Author(s):  
Tiago Henrique de Oliveira ◽  
José Gleidson Dantas ◽  
Josiclêda Domiciano Galvíncio ◽  
Rejane Magalhães de Mendonça Pimentel ◽  
Milton Botler

As rápidas mudanças do uso e cobertura do solo em ambiente urbano apresentam grande impacto nas relações entre os ciclos energéticos e hidrológicos sobre a superfície. O município do Recife, através da Lei de Uso e Ocupação do Solo de 1996 (Lei nº 16.176/96) define área verde como “toda área de domínio público ou privado, em solo natural,onde predomina qualquer forma de vegetação, distribuída em seus diferentes estratos: Arbóreo, Arbustivo e Herbáceo /Forrageira, nativa ou exótica”. O objetivo deste artigo é analisar a variação espacial das áreas verdes disponíveis no município do Recife e a evolução espaço-temporal da qualidade ambiental na RPA 4 através do computo do Índice de umidade (NDWI), Índice de Área Foliar (IAF) e Temperatura da superfície em imagens TM Landsat. Foi realizada uma classificação supervisionada na ortofotocarta Recife onde as áreas verdes foram exportadas para polígonos, permitindo a sua quantificação. Para as imagens TM foi aplicada parte da metodologia SEBAL. As áreas verdes ocupam 45,58% do Recife. Os transectos lineares e perfis permitiram visualizar mais facilmente as mudanças espaço-temporais ocorridos na RPA-4. Foi visualizada grande diferença de temperatura entre as áreas vegetadas e as áreas mais urbanizadas. Palavras-chave: Uso e ocupação do solo; área urbana, áreas vegetadas, sensoriamento remoto; MAXVER. A B S T R A C T The rapid change of use and land cover in urban environment poses great impact on relations between energy and hydrological cycles on the surface. The municipality of Recife, through the Land Use Legislation from 1996 (Law No. 16.176/96) defines green area as ";;;;;;any public or private domain area, in natural soil, where overcrows any form of vegetation, distributed in its different layers: Arboreal, shrubby and Herbaceous Forage, native or exotic";;;;;;. The goal of this paper is to analyze the spatial variation of available green areas in the city of Recife and the spatio-temporal evolution of environmental quality in the Political Administrative Region 4, known as RPA-4, through the calculation of moisture content (NDWI), leaf area index (LAI) and the surface temperature from Landsat TM images. Supervised classification was performed on orthophoto Reef where the green areas were exported to polygons, allowing its quantification. For the TM images, it has been applied the methodology SEBAL. The green areas occupy 45.58% of Recife. The linear transects and profiles allowed to show more easily space-time changes occurring in the RPA-4. Large temperature differences have been displayed between the most vegetated areas and more urbanized areas. Key-words: Land use; urban areas; vegetated area, remote sensing; MAXVER.


2014 ◽  
Vol 3 (2) ◽  
pp. 153-177 ◽  
Author(s):  
P. Robert ◽  
N. Cornilleau-Wehrlin ◽  
R. Piberne ◽  
Y. de Conchy ◽  
C. Lacombe ◽  
...  

Abstract. The main part of the Cluster Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment consists of triaxial search coils allowing the measurements of the three magnetic components of the waves from 0.1 Hz up to 4 kHz. Two sets of data are produced, one by a module to filter and transmit the corresponding waveform up to either 10 or 180 Hz (STAFF-SC), and the second by the onboard Spectrum Analyser (STAFF-SA) to compute the elements of the spectral matrix for five components of the waves, 3 × B and 2 × E (from the EFW experiment), in the frequency range 8 Hz to 4 kHz. In order to understand the way the output signals of the search coils are calibrated, the transfer functions of the different parts of the instrument are described as well as the way to transform telemetry data into physical units across various coordinate systems from the spinning sensors to a fixed and known frame. The instrument sensitivity is discussed. Cross-calibration inside STAFF (SC and SA) is presented. Results of cross-calibration between the STAFF search coils and the Cluster Fluxgate Magnetometer (FGM) data are discussed. It is shown that these cross-calibrations lead to an agreement between both data sets at low frequency within a 2% error. By means of statistics done over 10 yr, it is shown that the functionalities and characteristics of both instruments have not changed during this period.


2021 ◽  
Author(s):  
Yannick Back ◽  
Fabian Funke ◽  
Peter Marcus Bach ◽  
Joao Paulo Leitao ◽  
Wolfgang Rauch ◽  
...  

<p>In the face of rapid urban and population growth and with climate change altering precipitation patterns, urban water management is becoming increasingly demanding. Numerous software, tools and approaches to study urban water flow behaviour and model hydrological processes exist. However, the understanding of water movement in urban areas, especially during extreme events, and the physical principles behind them, as well as the interaction between the natural and the urban hydrological cycle is still incomplete. For decades, models suited for urban hydrological analysis greatly impacted the improvement of flood protection, public health and environmental protection, changing the way we look at urban water and stormwater management. In order to calculate accurate quantities of runoff in any rainfall/runoff model, information about urban sub-catchment characteristics plays an important role. Size, shape, topography, as well as land use influencing infiltration rates and evapotranspiration, are of great importance to calculate accurate runoff quantities on the urban scale. New implementations to reduce runoff towards the sewer system, such as decentralised stormwater techniques, increase the urgent need for accurate and high-resolution local/neighbourhood-scale information. Spatial and temporal developments require water management models to be connected with GIS (Geographical Information Systems). Initially not being developed to interact with each other, multiple approaches exist to combine GIS with water management models. Nevertheless, defining urban sub-catchments for rainfall-runoff modelling is often still performed manually using specific maps or using simple surface partitioning algorithms such as the Thiessen polygons. A significant disadvantage in generating urban sub-catchments manually is the fact that natural surface inclination is usually not considered, influencing the size and shape of the delineated sub-catchments. So far, only a few studies have devoted attention to improving the way urban sub-catchments are delineated and the information about their surface characteristics is generated. This study evaluates a GIS-based approach to automatically delineate urban sub-catchments accounting for the location of nodes (actual manholes or drain inlets) as sub-catchment outlets. In order to compare the influence of the sub-catchment delineation methods (1 to 3), we use (1) a digital surface model (DSM) and (2) a digital elevation model (DEM) to automatically delineate the urban sub-catchments and compare these two methods with each other as well as with (3) already manually derived sub-catchments of a specific case study. Furthermore, we compare hydraulic simulation results from the software SWMM with measured flow data to infer the most accurate sub-catchment delineation method.</p>


Sign in / Sign up

Export Citation Format

Share Document