scholarly journals Land-Use Regression Estimation of Cumulative Environmental Noise Exposure in Jefferson County, Kentucky

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Lindsey A. Wood ◽  
Ray Yeager ◽  
Brian Guinn ◽  
Kira C. Taylor ◽  
Jeremy Gaskins ◽  
...  
Author(s):  
Chloé Sieber ◽  
Martina S. Ragettli ◽  
Mark Brink ◽  
Olaniyan Toyib ◽  
Roslyn Baatjies ◽  
...  

In developing countries, noise exposure and its negative health effects have been little explored. The present study aimed to assess the noise exposure situation in adults living in informal settings in the Western Cape Province, South Africa. We conducted continuous one-week outdoor noise measurements at 134 homes in four different areas. These data were used to develop a land use regression (LUR) model to predict A-weighted day-evening-night equivalent sound level (Lden) from geographic information system (GIS) variables. Mean noise exposure during day (6:00-18:00) was 60.0 A-weighted decibels (dB(A)) (interquartile range 56.9-62.9 dB(A)), during night (22:00-6:00) 52.9 dB(A) (49.3-55.8 dB(A)) and average Lden was 63.0 dB(A) (60.1-66.5 dB(A)). Main predictors of the LUR model were related to road traffic and household density. Model performance was low (adjusted R2=0.130) suggesting that other influences than represented in the geographic predictors are relevant for noise exposure. This is one of the few studies on the noise exposure situation in low- and middle-income countries. It demonstrates that noise exposure levels are high in these settings.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254762
Author(s):  
Yu-Kai Huang ◽  
Uchechi A. Mitchell ◽  
Lorraine M. Conroy ◽  
Rachael M. Jones

Environmental noise may affect hearing and a variety of non-auditory disease processes. There is some evidence that, like other environmental hazards, noise may be differentially distributed across communities based on socioeconomic status. We aimed to a) predict daytime noise pollution levels and b) assess disparities in daytime noise exposure in Chicago, Illinois. We measured 5-minute daytime noise levels (Leq, 5-min) at 75 randomly selected sites in Chicago in March, 2019. Geographically-based variables thought to be associated with noise were obtained, and used to fit a noise land-use regression model to estimate the daytime environmental noise level at the centroid of the census blocks. Demographic and socioeconomic data were obtained from the City of Chicago for the 77 community areas, and associations with daytime noise levels were assessed using spatial autoregressive models. Mean sampled noise level (Leq, 5-min) was 60.6 dBA. The adjusted R2 and root mean square error of the noise land use regression model and the validation model were 0.60 and 4.67 dBA and 0.51 and 5.90 dBA, respectively. Nearly 75% of city blocks and 85% of city communities have predicted daytime noise level higher than 55 dBA. Of the socioeconomic variables explored, only community per capita income was associated with mean community predicted noise levels, and was highest for communities with incomes in the 2nd quartile. Both the noise measurements and land-use regression modeling demonstrate that Chicago has levels of environmental noise likely contributing to the total burden of environmental stressors. Noise is not uniformly distributed across Chicago; it is associated with proximity to roads and public transportation, and is higher among communities with mid-to-low incomes per capita, which highlights how socially and economically disadvantaged communities may be disproportionately impacted by this environmental exposure.


Author(s):  
Chloé Sieber ◽  
Martina S. Ragettli ◽  
Mark Brink ◽  
Olaniyan Toyib ◽  
Roslyn Baatjies ◽  
...  

2011 ◽  
Vol 45 (17) ◽  
pp. 7358-7364 ◽  
Author(s):  
Dan Xie ◽  
Yi Liu ◽  
Jining Chen

2021 ◽  
Vol 13 (9) ◽  
pp. 4933
Author(s):  
Saimar Pervez ◽  
Ryuta Maruyama ◽  
Ayesha Riaz ◽  
Satoshi Nakai

Ambient air pollution and its exposure has been a worldwide issue and can increase the possibility of health risks especially in urban areas of developing countries having the mixture of different air pollution sources. With the increase in population, industrial development and economic prosperity, air pollution is one of the biggest concerns in Pakistan after the occurrence of recent smog episodes. The purpose of this study was to develop a land use regression (LUR) model to provide a better understanding of air exposure and to depict the spatial patterns of air pollutants within the city. Land use regression model was developed for Lahore city, Pakistan using the average seasonal concentration of NO2 and considering 22 potential predictor variables including road network, land use classification and local specific variable. Adjusted explained variance of the LUR models was highest for post-monsoon (77%), followed by monsoon (71%) and was lowest for pre-monsoon (70%). This is the first study conducted in Pakistan to explore the applicability of LUR model and hence will offer the application in other cities. The results of this study would also provide help in promoting epidemiological research in future.


Author(s):  
Junli Liu ◽  
Panli Cai ◽  
Jin Dong ◽  
Junshun Wang ◽  
Runkui Li ◽  
...  

The spatiotemporal locations of large populations are difficult to clearly characterize using traditional exposure assessment, mainly due to their complicated daily intraurban activities. This study aimed to extract hourly locations for the total population of Beijing based on cell phone data and assess their dynamic exposure to ambient PM2.5. The locations of residents were located by the cellular base stations that were keeping in contact with their cell phones. The diurnal activity pattern of the total population was investigated through the dynamic spatial distribution of all of the cell phones. The outdoor PM2.5 concentration was predicted in detail using a land use regression (LUR) model. The hourly PM2.5 map was overlapped with the hourly distribution of people for dynamic PM2.5 exposure estimation. For the mobile-derived total population, the mean level of PM2.5 exposure was 89.5 μg/m3 during the period from 2013 to 2015, which was higher than that reported for the census population (87.9 μg/m3). The hourly activity pattern showed that more than 10% of the total population commuted into the center of Beijing (e.g., the 5th ring road) during the daytime. On average, the PM2.5 concentration at workplaces was generally higher than in residential areas. The dynamic PM2.5 exposure pattern also varied with seasons. This study exhibited the strengths of mobile location in deriving the daily spatiotemporal activity patterns of the population in a megacity. This technology would refine future exposure assessment, including either small group cohort studies or city-level large population assessments.


2021 ◽  
Vol 181 ◽  
pp. 108143
Author(s):  
Robson Silva Passos ◽  
Cecília Alexandra Abreu Coelho da Rocha ◽  
António Pedro Oliveira de Carvalho ◽  
Luiz Bueno da Silva ◽  
Ricardo Luís Alves da Silva

Sign in / Sign up

Export Citation Format

Share Document