Environmental Justice and Drinking Water Quality in U.S. Public Water Supplies

2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Laurel Anne Schaider ◽  
Lucien Swetschinski ◽  
Ruthann Rudel
2003 ◽  
Vol 47 (9) ◽  
pp. 31-36 ◽  
Author(s):  
S. Rizak ◽  
D. Cunliffe ◽  
M. Sinclair ◽  
R. Vulcano ◽  
J. Howard ◽  
...  

A growing list of water contaminants has led to some water suppliers relying primarily on compliance monitoring as a mechanism for managing drinking water quality. While such monitoring is a necessary part of drinking water quality management, experiences with waterborne disease threats and outbreaks have shown that compliance monitoring for numerical limits is not, in itself, sufficient to guarantee the safety and quality of drinking water supplies. To address these issues, the Australian National Health and Medical Research Council (NHMRC) has developed a Framework for Management of Drinking Water Quality (the Framework) for incorporation in the Australian Drinking Water Guidelines, the primary reference on drinking water quality in Australia. The Framework was developed specifically for drinking water supplies and provides a comprehensive and preventive risk management approach from catchment to consumer. It includes holistic guidance on a range of issues considered good practice for system management. The Framework addresses four key areas:•Commitment to Drinking Water Quality Management,•System Analysis and System Management,•Supporting Requirements, and•Review. The Framework represents a significantly enhanced approach to the management and regulation of drinking water quality and offers a flexible and proactive means of optimising drinking water quality and protecting public health. Rather than the primary reliance on compliance monitoring, the Framework emphasises prevention, the importance of risk assessment, maintaining the integrity of water supply systems and application of multiple barriers to assure protection of public health. Development of the Framework was undertaken in collaboration with the water industry, regulators and other stakeholders, and will promote a common and unified approach to drinking water quality management throughout Australia. The Framework has attracted international interest.


2011 ◽  
Vol 1 (4) ◽  
pp. 242-258 ◽  
Author(s):  
Zarah Rahman ◽  
Jonny Crocker ◽  
Kang Chang ◽  
Ranjiv Khush ◽  
Jamie Bartram

The global burden of disease attributable to contaminated drinking water calls for effective strategies for ensuring drinking water quality. To characterize institutional and policy approaches towards water quality management, we compared national and sub-national institutional frameworks for drinking water provision and management in nine developing countries, focusing on roles, responsibilities and capacity for water quality monitoring. Responsibilities for operational and surveillance (compliance) water quality monitoring of formal urban water supplies are typically well defined, with attention placed on both activities. Legal requirements for surveillance monitoring of community and smaller supplies are generally also in place, however, standards for operational monitoring vary considerably between countries. In practice, resources and capacity for consistent operational and surveillance monitoring of rural and informal urban supplies are limited. To improve oversight and management in these settings, we hypothesize that surveillance agencies could increase the use of audit-based water quality data collection from formal urban water suppliers and target the resulting efficiency gains towards increased direct surveillance of rural and informal water supplies. In addition there is a need for capacity building and technology development that supports increased operational monitoring and data reporting from resource-poor settings.


2016 ◽  
Vol 15 (2) ◽  
pp. 435-442 ◽  
Author(s):  
Wendong Wang ◽  
Shan Song ◽  
Zixia Qiao ◽  
Qin Yang ◽  
Mengmeng Wang ◽  
...  

Author(s):  
Dora Cardona Rivas ◽  
Militza Yulain Cardona Guzmán ◽  
Olga Lucía Ocampo López

Objective: To characterize the burden of intestinal infectious diseases attributable to drinking-water quality in 27 municipalities in the central region of Colombia. Materials and methods: A time-trend ecological study. The drinking-water quality of the National Institute of Health and the Institute of Hydrology, Meteorology and Environmental Studies was identified. The disease burden was calculated based on the mortality registered in the National Department of Statistics and the records of morbidity attended by the Social Protection Integrated Information System. The etiological agents reported in morbidity records and the observation of environmental conditions in the municipalities of the study were included. The disease burden was determined according to the methodology recommended by the World Health Organization (WHO).


Author(s):  
Yu.A. Novikova ◽  
I.O. Myasnikov ◽  
A.A. Kovshov ◽  
N.A. Tikhonova ◽  
N.S. Bashketova

Summary. Introduction: Drinking water is one of the most important environmental factors sustaining life and determining human health. The goal of the Russian Federal Clean Water Project is to improve drinking water quality through upgrading of water treatment and supply systems using advanced technologies, including those developed by the military-industrial complex. The most informative and reliable sources of information for assessing drinking water quality are the results of systematic laboratory testing obtained within the framework of socio-hygienic monitoring (SGM) and production control carried out by water supply organizations. The objective of our study was to formulate approaches to organizing quality monitoring programs for centralized cold water supply systems. Materials and methods: We reviewed programs and results of drinking water quality laboratory tests performed by Rospotrebnadzor bodies and institutions within the framework of SGM in 2017–2018. Results: We established that drinking water quality monitoring in the constituent entities of the Russian Federation differs significantly in the number of monitoring points (566 in the Krasnoyarsk Krai vs 10 in Sevastopol) and measured indicators, especially sanitary and chemical ones (53 inorganic and organic substances in the Kemerovo Region vs one indicator in the Amur Region). Discussion: For a more complete and objective assessment of drinking water quality in centralized cold water supply systems, monitoring points should be organized at all stages of water supply with account for the coverage of the maximum number of people supplied with water from a particular network. Thus, the number of points in the distribution network should depend, inter alia, on the size of population served. In urban settlements with up to 10,000 inhabitants, for example, at least 4 points should be organized while in the cities with more than 3,000,000 inhabitants at least 80 points are necessary. We developed minimum mandatory lists of indicators and approaches to selecting priority indices to be monitored at all stages of drinking water supply.


1991 ◽  
Vol 23 (1-3) ◽  
pp. 201-209 ◽  
Author(s):  
W. Kreisel

Water quality can affect human health in various ways: through breeding of vectors, presence of pathogenic protozoa, helminths, bacteria and viruses, or through inorganic and organic chemicals. While traditional concern has been with pathogens and gastro-intestinal diseases, chemical pollutants in drinking-water supplies have in many instances reached proportions which affect human health, especially in cases of chronic exposure. Treatment of drinking-water, often grossly inadequate in developing countries, is the last barrier of health protection, but control at source is more effective for pollution control. Several WHO programmes of the International Drinking-Water Supply and Sanitation Decade have stimulated awareness of the importance of water quality in public water supplies. Three main streams have been followed during the eighties: guidelines for drinking-water quality, guidelines for wastewater reuse and the monitoring of freshwater quality. Following massive investments in the community water supply sector to provide people with adequate quantities of drinking-water, it becomes more and more important to also guarantee minimum quality standards. This has been recognized by many water and health authorities in developing countries and, as a result, WHO cooperates with many of them in establishing water quality laboratories and pollution control programmes.


1999 ◽  
Vol 39 (2) ◽  
pp. 201-208 ◽  
Author(s):  
C. Dierkes ◽  
W. F. Geiger

Runoff from highways contains significant loads of heavy metals and hydrocarbons. According to German regulations, it should be infiltrated over embankments to support groundwater-recharge. To investigate the decontaminating effect of greened embankments, soil-monoliths from highways with high traffic densities were taken. Soils were analyzed to characterize the contamination in relation to distance and depth for lead, zinc, copper, cadmium, PAH and MOTH. Lysimeters were charged in the field and laboratory with highway runoff to study the effluents under defined conditions. Concentrations of pollutants in roadside soils depend on the age of embankments and traffic density. Highest concentrations were found in the upper 5 cm of the soil and within a distance of up to two metres from the street. Concentrations of most pollutants decreased rapidly with depth and distance. Lead and cadmium could not be detected in lysimeter effluent. Zinc and copper were found in concentrations that did not exceed drinking water quality limits.


Sign in / Sign up

Export Citation Format

Share Document