scholarly journals Leucocytosis and Stroke in a Lung Cancer Patient

Author(s):  
Neha Akkad ◽  
Yang Jiang ◽  
Daniel Shin

Significant leucocytosis in the setting of an underlying malignancy may be attributed to several causes and is not uncommon; however, extreme leucocytosis (>50×109 cells/l) and hypereosinophilia is less common and may represent a paraneoplastic syndrome. The underlying mechanism is thought to be bone marrow stimulation by tumour-produced cytokines, most notably interleukin-5 (IL-5) and granulocyte-macrophage colony-stimulating factor (GM-CSF). This paraneoplastic syndrome is likely reflective of extensive disease and dissemination, and options for treatment are limited but include tumour resection, corticosteroids and hydroxyurea. In this report, we discuss an unusual case of known stage III lung adenocarcinoma presenting with an ischaemic stroke and extreme leucocytosis and hypereosinophilia. 

Blood ◽  
1995 ◽  
Vol 86 (9) ◽  
pp. 3507-3516 ◽  
Author(s):  
KA Scoggan ◽  
AW Ford-Hutchinson ◽  
DW Nicholson

Cytokines can stimulate eosinophils to produce cysteinyl leukotrienes (LTs) in the lung that provoke tissue destruction associated with asthma. Priming of an eosinophilic substrain of HL-60 cells (HL-60#7) with recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) before ionophore challenge was found to produce an apparent 45% increase in total LT production in a dose-dependent manner (ED50 = 150 pmol/L) that could be accounted for by a decrease in the time required for maximal formation of LTs. GM-CSF had no effect on the kinetic parameters of LTC4 synthase and therefore probably acts upstream of this catalytic event. Incubation with interleukin-5 (IL-5), however, had no effect on LT biosynthesis. This differential priming ability was not a consequence of different receptor populations or differences in the affinity or stability of the ligand-receptor complexes of GM-CSF and IL-5. GM-CSF and IL-5 each displayed similar populations of high-affinity binding sites and neither GM-CSF nor IL-5 were able to cross-compete for the other's receptor binding sites. Analysis of phosphotyrosine patterns suggest that IL-5 is incapable of transducing a signal in eosinophilic HL-60#7 cells even though IL-5 and GM-CSF receptors mediate signal transduction via a common beta-chain component that is also necessary for high-affinity binding. Overall, this unique system may permit the dissection of distinct events responsible for specific intracellular signals transduced separately by GM-CSF or IL-5.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 1943-1951 ◽  
Author(s):  
Q. Sun ◽  
K. Jones ◽  
B. McClure ◽  
B. Cambareri ◽  
B. Zacharakis ◽  
...  

Abstract Human interleukin-5 (IL-5), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-3 are eosinophilopoietic cytokines implicated in allergy in general and in the inflammation of the airways specifically as seen in asthma. All 3 cytokines function through cell surface receptors that comprise a ligand-specific  chain and a shared subunit (βc). Although binding of IL-5, GM-CSF, and IL-3 to their respective receptor  chains is the first step in receptor activation, it is the recruitment of βc that allows high-affinity binding and signal transduction to proceed. Thus, βc is a valid yet untested target for antiasthma drugs with the added advantage of potentially allowing antagonism of all 3 eosinophil-acting cytokines with a single compound. We show here the first development of such an agent in the form of a monoclonal antibody (MoAb), BION-1, raised against the isolated membrane proximal domain of βc. BION-1 blocked eosinophil production, survival, and activation stimulated by IL-5 as well as by GM-CSF and IL-3. Studies of the mechanism of this antagonism showed that BION-1 prevented the high-affinity binding of125I–IL-5, 125I–GM-CSF, and125I–IL-3 to purified human eosinophils and that it bound to the major cytokine binding site of βc. Interestingly, epitope analysis using several βc mutants showed that BION-1 interacted with residues different from those used by IL-5, GM-CSF, and IL-3. Furthermore, coimmunoprecipitation experiments showed that BION-1 prevented ligand-induced receptor dimerization and phosphorylation of βc, suggesting that ligand contact with βc is a prerequisite for recruitment of βc, receptor dimerization, and consequent activation. These results demonstrate the feasibility of simultaneously inhibiting IL-5, GM-CSF, and IL-3 function with a single agent and that BION-1 represents a new tool and lead compound with which to identify and generate further agents for the treatment of eosinophil-dependent diseases such as asthma.


Blood ◽  
2001 ◽  
Vol 98 (10) ◽  
pp. 3165-3168 ◽  
Author(s):  
Barbara McClure ◽  
Frank Stomski ◽  
Angel Lopez ◽  
Joanna Woodcock

Abstract Transfected murine cell lines are commonly used to study the function of many human cytokine or receptor mutants. This study reports the inappropriate activation of the human granulocyte-macrophage colony-stimulating factor (hGM-CSF) receptor by the human GM-CSF antagonist, E21R, when the human receptor is introduced into the murine cell line BaF-B03. E21R-induced proliferation of the BaF-B03 cells is dependent on transfection with both hGM-CSF receptor α and βc subunits. Studies on the underlying mechanism revealed constitutive association between human and mouse βc and GM-CSF receptor-α, tyrosine phosphorylation of mouse and human βc, and association of phosphorylated mouse βc into an activated human GM-CSF receptor complex in response to E21R and GM-CSF. This interspecies receptor cross-talk of receptor signaling subunits may produce misleading results and emphasizes the need to use cell lines devoid of the cognate endogenous receptors for functional analysis of ligand and receptor mutants.


Blood ◽  
1998 ◽  
Vol 92 (3) ◽  
pp. 778-783 ◽  
Author(s):  
Birgit Dibbert ◽  
Isabelle Daigle ◽  
Doris Braun ◽  
Corinna Schranz ◽  
Martina Weber ◽  
...  

Eosinophils are potent inflammatory cells involved in allergic reactions. Inhibition of apoptosis of purified eosinophils by certain cytokines has been previously shown to be an important mechanism causing tissue eosinophilia. To elucidate the role of Bcl-2 family members in the inhibition of eosinophil apoptosis, we examined the expression of the known anti-apoptotic genes Bcl-2, Bcl-xL, and A1, as well as Bax and Bcl-xS, which promote apoptosis in other systems. We show herein that freshly isolated human eosinophils express significant amounts of Bcl-xL and Bax, but only little or no Bcl-2, Bcl-xS, or A1. As assessed by reverse transcription-polymerase chain reaction, immunoblotting, flow cytometry, and immunocytochemistry, we show that spontaneous eosinophil apoptosis is associated with a decrease in Bcl-xL mRNA and protein levels. In contrast, stimulation of the cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-5 (IL-5) results in maintenance or upregulation of Bcl-xL mRNA and protein levels. Moreover, Bcl-2 protein is not induced by GM-CSF or IL-5 in purified eosinophils. Bcl-2 protein is also not expressed in tissue eosinophils as assessed by immunohistochemistry using two different eosinophilic tissue models. Furthermore, Bcl-xL antisense but not scrambled phosphorothioate oligodeoxynucleotides can partially block the cytokine-mediated rescue of apoptotic death in these cells. These data suggest that Bcl-xL acts as an anti-apoptotic molecule in eosinophils. © 1998 by The American Society of Hematology.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 1943-1951 ◽  
Author(s):  
Q. Sun ◽  
K. Jones ◽  
B. McClure ◽  
B. Cambareri ◽  
B. Zacharakis ◽  
...  

Human interleukin-5 (IL-5), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-3 are eosinophilopoietic cytokines implicated in allergy in general and in the inflammation of the airways specifically as seen in asthma. All 3 cytokines function through cell surface receptors that comprise a ligand-specific  chain and a shared subunit (βc). Although binding of IL-5, GM-CSF, and IL-3 to their respective receptor  chains is the first step in receptor activation, it is the recruitment of βc that allows high-affinity binding and signal transduction to proceed. Thus, βc is a valid yet untested target for antiasthma drugs with the added advantage of potentially allowing antagonism of all 3 eosinophil-acting cytokines with a single compound. We show here the first development of such an agent in the form of a monoclonal antibody (MoAb), BION-1, raised against the isolated membrane proximal domain of βc. BION-1 blocked eosinophil production, survival, and activation stimulated by IL-5 as well as by GM-CSF and IL-3. Studies of the mechanism of this antagonism showed that BION-1 prevented the high-affinity binding of125I–IL-5, 125I–GM-CSF, and125I–IL-3 to purified human eosinophils and that it bound to the major cytokine binding site of βc. Interestingly, epitope analysis using several βc mutants showed that BION-1 interacted with residues different from those used by IL-5, GM-CSF, and IL-3. Furthermore, coimmunoprecipitation experiments showed that BION-1 prevented ligand-induced receptor dimerization and phosphorylation of βc, suggesting that ligand contact with βc is a prerequisite for recruitment of βc, receptor dimerization, and consequent activation. These results demonstrate the feasibility of simultaneously inhibiting IL-5, GM-CSF, and IL-3 function with a single agent and that BION-1 represents a new tool and lead compound with which to identify and generate further agents for the treatment of eosinophil-dependent diseases such as asthma.


1990 ◽  
Vol 172 (1) ◽  
pp. 399-402 ◽  
Author(s):  
A P Limaye ◽  
J S Abrams ◽  
J E Silver ◽  
E A Ottesen ◽  
T B Nutman

Production of the eosinophilogenic cytokines interleukin 3 (IL-3), granulocyte/macrophage colony-stimulating factor (GM-CSF), and IL-5 by mitogen-stimulated peripheral blood mononuclear cells was compared between 11 noneosinophilic individuals and seven patients with helminth-induced eosinophilia. Both the kinetics and quantities of IL-3 and GM-CSF were similar in the two groups. In contrast, IL-5 production at both the protein and the mRNA level was markedly greater in the eosinophilic patients, an observation suggesting that IL-5 may be particularly important in mediating the selective eosinophilia seen in filarial and other helminth infections.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yingli Zhu ◽  
Linyuan Wang ◽  
Zhihui Yang ◽  
Jingxia Wang ◽  
Wei Li ◽  
...  

Paeonia lactifloraroot (baishao in Chinese) is a commonly used herb in traditional Chinese medicine (TCM). Paeoniflorin (PF) and albiflorin (AF) are two major active constituents ofP. lactiflora. In this paper, we aimed to investigate the hematopoietic effects of PF and AF on myelosuppression mice induced by radiotherapy and to explore the underlying mechanism. The finding indicated that PF and AF significantly increased the numbers of white blood cells (WBC) and reversed the atrophy of thymus. Furthermore, PF and AF increased the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) and reduced the levels of tumor necrosis factor-α(TNF-α) in serum and increased the level of colony-stimulating factor (G-CSF) in plasma. Lastly, PF and AF not only enhanced the mRNA levels of GM-CSF and G-CSF in the spleens, but also increased the protein levels of G-CSF and GM-CSF in bone marrow. Our results suggest that PF and AF may promote the recovery of bone marrow hemopoietic function in a myelosuppressed mouse model.


2000 ◽  
Vol 68 (4) ◽  
pp. 1905-1911 ◽  
Author(s):  
Prasad S. D. Turaga ◽  
Tracy J. Tierney ◽  
Kristine E. Bennett ◽  
Maggie C. McCarthy ◽  
Scott C. Simonek ◽  
...  

ABSTRACT Antigen-specific interleukin-5 (IL-5), gamma interferon (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) responses in individuals living in an area of hyperendemicity for onchocerciasis in Cameroon were examined. The responses against antigens prepared fromOnchocerca volvulus third-stage larvae (L3), molting L3 (mL3), and crude extract from adult males (M-OvAg) were compared to the responses against antigens from adult female worms and skin microfilariae. Cytokine responses for the putatively immune individuals (PI) and the infected individuals (INF) were compared. A differential cytokine profile of IL-5 (Th2 phenotype) and IFN-γ (Th1 phenotype) was found in these individuals in response to the antigens. In both the PI and the INF, Th2 responses against all the antigens tested were dominant. However, in the PI group as a whole, there was an enhanced Th2 response against the larval antigens and the adult male and adult female antigens, and a Th1 response in a subgroup of the PI (27 to 54.5%) against L3, mL3, and M-OvAg antigens was present. While the PI produced significantly higher levels of GM-CSF against L3, mL3, and M-OvAg antigens than the INF, there was no difference in the GM-CSF responses of the groups against the other antigens. The present study indicated that, in comparison to the INF, the PI have distinct larva-specific and adult male-specific cytokine responses, thus supporting the premise that immunological studies of the PI would lead to the identification of immune mechanisms and the target genes that play a role in protective immunity.


Sign in / Sign up

Export Citation Format

Share Document