scholarly journals Hematopoietic Effects of Paeoniflorin and Albiflorin on Radiotherapy-Induced Myelosuppression Mice

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yingli Zhu ◽  
Linyuan Wang ◽  
Zhihui Yang ◽  
Jingxia Wang ◽  
Wei Li ◽  
...  

Paeonia lactifloraroot (baishao in Chinese) is a commonly used herb in traditional Chinese medicine (TCM). Paeoniflorin (PF) and albiflorin (AF) are two major active constituents ofP. lactiflora. In this paper, we aimed to investigate the hematopoietic effects of PF and AF on myelosuppression mice induced by radiotherapy and to explore the underlying mechanism. The finding indicated that PF and AF significantly increased the numbers of white blood cells (WBC) and reversed the atrophy of thymus. Furthermore, PF and AF increased the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) and reduced the levels of tumor necrosis factor-α(TNF-α) in serum and increased the level of colony-stimulating factor (G-CSF) in plasma. Lastly, PF and AF not only enhanced the mRNA levels of GM-CSF and G-CSF in the spleens, but also increased the protein levels of G-CSF and GM-CSF in bone marrow. Our results suggest that PF and AF may promote the recovery of bone marrow hemopoietic function in a myelosuppressed mouse model.

2008 ◽  
Vol 295 (1) ◽  
pp. L114-L122 ◽  
Author(s):  
Megan N. Ballinger ◽  
Leah L. N. Hubbard ◽  
Tracy R. McMillan ◽  
Galen B. Toews ◽  
Marc Peters-Golden ◽  
...  

Impaired host defense post-bone marrow transplant (BMT) is related to overproduction of prostaglandin E2(PGE2) by alveolar macrophages (AMs). We show AMs post-BMT overproduce granulocyte-macrophage colony-stimulating factor (GM-CSF), whereas GM-CSF in lung homogenates is impaired both at baseline and in response to infection post-BMT. Homeostatic regulation of GM-CSF may occur by hematopoietic/structural cell cross talk. To determine whether AM overproduction of GM-CSF influenced immunosuppression post-BMT, we compared mice that received BMT from wild-type donors (control BMT) or mice that received BMT from GM-CSF−/− donors (GM-CSF−/− BMT) with untransplanted mice. GM-CSF−/− BMT mice were less susceptible to pneumonia with Pseudomonas aeruginosa compared with control BMT mice and showed antibacterial responses equal to or better than untransplanted mice. GM-CSF−/− BMT AMs displayed normal phagocytosis and a trend toward enhanced bacterial killing. Surprisingly, AMs from GM-CSF−/− BMT mice overproduced PGE2, but expression of the inhibitory EP2receptor was diminished. As a consequence of decreased EP2receptor expression, we found diminished accumulation of cAMP in response to PGE2stimulation in GM-CSF−/− BMT AMs compared with control BMT AMs. In addition, GM-CSF−/− BMT AMs retained cysteinyl leukotriene production and normal TNF-α response compared with AMs from control BMT mice. GM-CSF−/− BMT neutrophils also showed improved bacterial killing. Although genetic ablation of GM-CSF in hematopoietic cells post-BMT improved host defense, transplantation of wild-type bone marrow into GM-CSF−/− recipients demonstrated that parenchymal cell-derived GM-CSF is necessary for effective innate immune responses post-BMT. These results highlight the complex regulation of GM-CSF and innate immunity post-BMT.


Blood ◽  
1995 ◽  
Vol 86 (7) ◽  
pp. 2526-2533 ◽  
Author(s):  
L Yang ◽  
YC Yang

Abstract Interactions between different cytokines, extracellular matrix components, and various cell types inside the bone marrow microenvironment are believed to play important roles in the regulation of hematopoiesis. We observed that both interleukin-1 (IL-1) and 12-O- tetradecanoylphorbol-13-acetate (TPA) can stimulate the expression of IL-11 and granulocyte-macrophage colony-stimulating factor (GM-CSF) genes in a primate bone marrow stromal fibroblast cell line, PU-34. We also found that IL-1 or TPA-stimulated IL-11 and GM-CSF expression in PU-34 cells can be abolished by heparin, a class of molecules related to extracellular matrix components, glycosaminoglycans. Because the growth inhibitory signals provided by extracellular factors were less understood, the mechanisms of heparin inhibition of IL-11 and GM-CSF gene expression were further investigated. Our data demonstrate for the first time that heparin did not alter the transcription of endogenous IL-11 and GM-CSF genes or an exogenous IL-11 promoter construct containing an AP-1 sequence. Instead, heparin facilitated the degradation of the corresponding mRNAs. Through RNA gel shift assays, heparin-mediated mRNA destabilization was tentatively linked to its competition for mRNA binding proteins both in the cell-free system and in intact cells. Collectively, our findings suggest that varying degrees of heparin inhibition may provide a novel mechanism for the regulation of cytokine expression during the growth and differentiation of different lineages of hematopoietic cells.


Blood ◽  
2001 ◽  
Vol 98 (10) ◽  
pp. 3165-3168 ◽  
Author(s):  
Barbara McClure ◽  
Frank Stomski ◽  
Angel Lopez ◽  
Joanna Woodcock

Abstract Transfected murine cell lines are commonly used to study the function of many human cytokine or receptor mutants. This study reports the inappropriate activation of the human granulocyte-macrophage colony-stimulating factor (hGM-CSF) receptor by the human GM-CSF antagonist, E21R, when the human receptor is introduced into the murine cell line BaF-B03. E21R-induced proliferation of the BaF-B03 cells is dependent on transfection with both hGM-CSF receptor α and βc subunits. Studies on the underlying mechanism revealed constitutive association between human and mouse βc and GM-CSF receptor-α, tyrosine phosphorylation of mouse and human βc, and association of phosphorylated mouse βc into an activated human GM-CSF receptor complex in response to E21R and GM-CSF. This interspecies receptor cross-talk of receptor signaling subunits may produce misleading results and emphasizes the need to use cell lines devoid of the cognate endogenous receptors for functional analysis of ligand and receptor mutants.


2006 ◽  
Vol 290 (5) ◽  
pp. C1364-C1372 ◽  
Author(s):  
Lorena Martín ◽  
Mónica Comalada ◽  
Luc Marti ◽  
Ellen I. Closs ◽  
Carol L. MacLeod ◽  
...  

l-Arginine transport is crucial for macrophage activation because it supplies substrate for the key enzymes nitric oxide synthase 2 and arginase I. These enzymes participate in classic and alternative activation of macrophages, respectively. Classic activation of macrophages is induced by type I cytokines, and alternative activation is induced by type II cytokines. The granulocyte macrophage colony-stimulating factor (GM-CSF), in addition to inducing proliferation and differentiation of macrophages, activates arginase I, but its action on l-arginine transport is unknown. We studied the l-arginine transporters that are active in mouse primary bone marrow-derived macrophages (BMM) and examined the effect of GM-CSF treatment on transport activities. Under basal conditions, l-arginine entered mainly through system y+L (>75%). The remaining transport was explained by system y+ (<10%) and a diffusion component (10–15%). In response to GM-CSF treatment, transport activity increased mostly through system y+ (>10-fold), accounting for about 40% of the total l-arginine transport. The increase in y+ activity correlated with a rise in cationic amino acid transporter (CAT)-2 mRNA and protein. Furthermore, GM-CSF induced an increase in arginase activity and in the conversion of l-arginine to ornithine, citrulline, glutamate, proline, and polyamines. BMM obtained from CAT2-knockout mice responded to GM-CSF by increasing arginase activity and the expression of CAT1 mRNA, which also encodes system y+ activity. Nonetheless, the increase in CAT1 activity only partially compensated the lack of CAT2 and l-arginine metabolism was hardly stimulated. We conclude that BMM present mainly y+L activity and that, in response to GM-CSF, l-arginine transport augments through CAT2, thereby increasing the availability of this amino acid to the cell.


Blood ◽  
1989 ◽  
Vol 74 (5) ◽  
pp. 1491-1498 ◽  
Author(s):  
S Vadhan-Raj ◽  
HE Broxmeyer ◽  
G Spitzer ◽  
A LeMaistre ◽  
S Hultman ◽  
...  

Abstract A complete hematologic remission was achieved in a patient with therapy- related preleukemia and transfusion-dependent pancytopenia after treatment with recombinant human granulocyte-macrophage colony- stimulating factor (GM-CSF). The patient remained in remission for nearly 1 year despite the discontinuation of GM-CSF treatment. Several lines of evidence suggest that normal hematopoiesis was restored after GM-CSF treatment. First, the cytogenetic anomaly, which was present before GM-CSF, completely disappeared after three cycles of treatment. Cytogenetic conversion was documented by conventional karyotypic evaluation of mitotic bone marrow cell preparations as well as by premature chromosome condensation analysis of the nonmitotic cells of bone marrow and peripheral blood. Second, the growth pattern and cycle status of bone marrow granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) progenitor cells were found to be normal during remission. Third, X chromosome-linked restriction fragment length polymorphism- methylation analysis of DNA from mononuclear cells (greater than 80% lymphocytes) and mature myeloid elements showed a polyclonal pattern. These findings suggest that restoration of hematopoiesis in this patient after GM-CSF treatment may have resulted from suppression of the abnormal clone and a selective growth advantage of normal elements.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3829-3840 ◽  
Author(s):  
Xiaowu Zhang ◽  
Ruibao Ren

Abstract The bcr-abl oncogene plays a critical role in causing chronic myelogenous leukemia (CML). Effective laboratory animal models of CML are needed to study the molecular mechanisms by which thebcr-abl oncogene acts in the disease progression of CML. We used a murine stem cell retroviral vector (MSCV) to transduce thebcr-abl/p210 oncogene into mouse bone marrow cells and found that expression of Bcr-Abl/p210 induced a myeloproliferative disorder that resembled the chronic phase of human CML in 100% of bone marrow transplanted mice in about 3 weeks. This CML-like disease was readily transplanted to secondary recipient mice. Multiple clones of infected cells were expanded in the primary recipients, but the leukemia was primarily monoclonal in the secondary recipient mice. Mutation analysis demonstrated that the protein tyrosine kinase activity of Bcr-Abl/p210 was essential for its leukemogenic potential in vivo. Interestingly, we found that the leukemic cells expressed excess interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the diseased mice. These studies demonstrate that expression of Bcr-Abl can induce a CML-like leukemia in mice much more efficiently and reproducibly than in previously reported mouse CML models, probably due to efficient expression in the correct target cell(s). Our first use of this model for analysis of the molecular mechanisms involved in CML raises the possibility that excess expression of hematopoietic growth factors such as IL-3 and GM-CSF may contribute to the clinical phenotype of CML.


Blood ◽  
1998 ◽  
Vol 92 (3) ◽  
pp. 778-783 ◽  
Author(s):  
Birgit Dibbert ◽  
Isabelle Daigle ◽  
Doris Braun ◽  
Corinna Schranz ◽  
Martina Weber ◽  
...  

Eosinophils are potent inflammatory cells involved in allergic reactions. Inhibition of apoptosis of purified eosinophils by certain cytokines has been previously shown to be an important mechanism causing tissue eosinophilia. To elucidate the role of Bcl-2 family members in the inhibition of eosinophil apoptosis, we examined the expression of the known anti-apoptotic genes Bcl-2, Bcl-xL, and A1, as well as Bax and Bcl-xS, which promote apoptosis in other systems. We show herein that freshly isolated human eosinophils express significant amounts of Bcl-xL and Bax, but only little or no Bcl-2, Bcl-xS, or A1. As assessed by reverse transcription-polymerase chain reaction, immunoblotting, flow cytometry, and immunocytochemistry, we show that spontaneous eosinophil apoptosis is associated with a decrease in Bcl-xL mRNA and protein levels. In contrast, stimulation of the cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-5 (IL-5) results in maintenance or upregulation of Bcl-xL mRNA and protein levels. Moreover, Bcl-2 protein is not induced by GM-CSF or IL-5 in purified eosinophils. Bcl-2 protein is also not expressed in tissue eosinophils as assessed by immunohistochemistry using two different eosinophilic tissue models. Furthermore, Bcl-xL antisense but not scrambled phosphorothioate oligodeoxynucleotides can partially block the cytokine-mediated rescue of apoptotic death in these cells. These data suggest that Bcl-xL acts as an anti-apoptotic molecule in eosinophils. © 1998 by The American Society of Hematology.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3829-3840 ◽  
Author(s):  
Xiaowu Zhang ◽  
Ruibao Ren

The bcr-abl oncogene plays a critical role in causing chronic myelogenous leukemia (CML). Effective laboratory animal models of CML are needed to study the molecular mechanisms by which thebcr-abl oncogene acts in the disease progression of CML. We used a murine stem cell retroviral vector (MSCV) to transduce thebcr-abl/p210 oncogene into mouse bone marrow cells and found that expression of Bcr-Abl/p210 induced a myeloproliferative disorder that resembled the chronic phase of human CML in 100% of bone marrow transplanted mice in about 3 weeks. This CML-like disease was readily transplanted to secondary recipient mice. Multiple clones of infected cells were expanded in the primary recipients, but the leukemia was primarily monoclonal in the secondary recipient mice. Mutation analysis demonstrated that the protein tyrosine kinase activity of Bcr-Abl/p210 was essential for its leukemogenic potential in vivo. Interestingly, we found that the leukemic cells expressed excess interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the diseased mice. These studies demonstrate that expression of Bcr-Abl can induce a CML-like leukemia in mice much more efficiently and reproducibly than in previously reported mouse CML models, probably due to efficient expression in the correct target cell(s). Our first use of this model for analysis of the molecular mechanisms involved in CML raises the possibility that excess expression of hematopoietic growth factors such as IL-3 and GM-CSF may contribute to the clinical phenotype of CML.


1996 ◽  
Vol 183 (6) ◽  
pp. 2657-2662 ◽  
Author(s):  
R Nishinakamura ◽  
R Wiler ◽  
U Dirksen ◽  
Y Morikawa ◽  
K Arai ◽  
...  

Mice mutant for granulocyte macrophage colony-stimulating factor (GM-CSF) or the common receptor component (beta c) for GM-CSF, interleukin (IL)-3, and IL-5 exhibit a lung disorder similar to human pulmonary alveolar proteinosis, a rare disease with congenital, infantile, and adult forms. Bone marrow transplantation and hematopoietic reconstitution of beta c mutant mice with wild-type bone marrow reversed the established disease state in the lungs, defining this disease as hematopoietic in nature. It is likely that the disease involves alveolar macrophages, as donor myeloid cell engraftment into the lungs of mutant recipient mice correlated with reverting both the disease and an abnormal macrophage morphology seen in the lungs of affected animals. Recombination Activating Gene-2 mutant donor bone marrow, which lacks the potential to develop lymphocytes, reversed the pathology in the lungs to the same extent as whole bone marrow. These data establish that certain lung disorders, if of cell-autonomous hematopoietic origin, can be manipulated by bone marrow transplantation.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
B. Rumore-Maton ◽  
J. Elf ◽  
N. Belkin ◽  
B. Stutevoss ◽  
F. Seydel ◽  
...  

Defects in macrophage colony-stimulating factor (M-CSF) signaling disrupt myeloid cell differentiation in nonobese diabetic (NOD) mice, blocking myeloid maturation into tolerogenic antigen-presenting cells (APCs). In the absence of M-CSF signaling, NOD myeloid cells have abnormally high granulocyte macrophage colony-stimulating factor (GM-CSF) expression, and as a result, persistent activation of signal transducer/activator of transcription 5 (STAT5). Persistent STAT5 phosphorylation found in NOD macrophages is not affected by inhibiting GM-CSF. However, STAT5 phosphorylation in NOD bone marrow cells is diminished if GM-CSF signaling is blocked. Moreover, if M-CSF signaling is inhibited, GM-CSF stimulationin vitrocan promote STAT5 phosphorylation in nonautoimmune C57BL/6 mouse bone marrow cultures to levels seen in the NOD. These findings suggest that excessive GM-CSF production in the NOD bone marrow may interfere with the temporal sequence of GM-CSF and M-CSF signaling needed to mediate normal STAT5 function in myeloid cell differentiation gene regulation.


Sign in / Sign up

Export Citation Format

Share Document