scholarly journals Effect of Fuel Combustion Products on Carbon Dioxide Uptake Dynamics of Chlorophyll Synthesizing Microalgae

2019 ◽  
Vol 20 (6) ◽  
pp. 18-24
Author(s):  
Vasil Dyachok ◽  
Solomiya Mandryk ◽  
Victoria Katysheva ◽  
Serhiy Huhlych
Author(s):  
A. NIKOLAYEV ◽  
◽  
A. M. Mebel ◽  
V. N. Azyazov ◽  
◽  
...  

This research is devoted to the problem of environmental pollution. The study of various pathways that reduce emissions of fuel combustion products into the Earth's atmosphere is still applicable today.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2053
Author(s):  
Dragutin Nedeljkovic

An increased demand for energy in recent decades has caused an increase in the emissions of combustion products, among which carbon-dioxide is the most harmful. As carbon-dioxide induces negative environmental effects, like global warming and the greenhouse effect, a decrease of the carbon-dioxide emission has emerged as one of the most urgent tasks in engineering. In this work, the possibility for the application of the polymer-based, dense, mixed matrix membranes for flue gas treatment was tested. The task was to test a potential decrease in the permeability and selectivity of a mixed-matrix membrane in the presence of moisture and at elevated temperature. Membranes are based on two different poly(ethylene oxide)-based polymers filled with two different zeolite powders (ITR and IWS). An additive of detergent type was added to improve the contact properties between the zeolite and polymer matrix. The measurements were performed at three different temperatures (30, 60, and 90 °C) under wet conditions, with partial pressure of the water equal to the vapor pressure of the water at the given temperature. The permeability of carbon-dioxide, hydrogen, nitrogen, and oxygen was measured, and the selectivity of the carbon-dioxide versus other gases was determined. Obtained results have shown that an increase of temperature and partial pressure of the vapor slightly increase both the selectivity and permeability of the synthesized membranes. It was also shown that the addition of the zeolite powder increases the permeability of carbon-dioxide while maintaining the selectivity, compared to hydrogen, oxygen, and nitrogen.


2021 ◽  
pp. 12-17
Author(s):  
M. A. Vaganov

It is proposed to use the methods of applied optical spectroscopy to solve the problem of control and diagnostics of gaseous hydrocarbon fuel combustion in this work. The results of an experimental study of spectroscopic informative parameters characterizing the propane combustion process are presented for three modes: combustion of pure propane without air supply, stoichiometric combustion and combustion with a change in the amount of supplied air relative to stoichiometric combustion. As a result of the experiment, it was found that the most intense bands in the emission spectrum of the flame arising from the combustion of propane correspond to the spectral bands of radicals of combustion products: OH, CH, and C2. While the intensities of various systems of bands in the flame spectrum depend significantly on the composition of the combustible mixture.


Author(s):  
Jongsup Hong ◽  
Ahmed F. Ghoniem ◽  
Randall Field ◽  
Marco Gazzino

Oxy-fuel combustion coal-fired power plants can achieve significant reduction in carbon dioxide emissions, but at the cost of lowering their efficiency. Research and development are conducted to reduce the efficiency penalty and to improve their reliability. High-pressure oxy-fuel combustion has been shown to improve the overall performance by recuperating more of the fuel enthalpy into the power cycle. In our previous papers, we demonstrated how pressurized oxy-fuel combustion indeed achieves higher net efficiency than that of conventional atmospheric oxy-fuel power cycles. The system utilizes a cryogenic air separation unit, a carbon dioxide purification/compression unit, and flue gas recirculation system, adding to its cost. In this study, we perform a techno-economic feasibility study of pressurized oxy-fuel combustion power systems. A number of reports and papers have been used to develop reliable models which can predict the costs of power plant components, its operation, and carbon dioxide capture specific systems, etc. We evaluate different metrics including capital investments, cost of electricity, and CO2 avoidance costs. Based on our cost analysis, we show that the pressurized oxy-fuel power system is an effective solution in comparison to other carbon dioxide capture technologies. The higher heat recovery displaces some of the regeneration components of the feedwater system. Moreover, pressurized operating conditions lead to reduction in the size of several other critical components. Sensitivity analysis with respect to important parameters such as coal price and plant capacity is performed. The analysis suggests a guideline to operate pressurized oxy-fuel combustion power plants in a more cost-effective way.


Sign in / Sign up

Export Citation Format

Share Document