scholarly journals Modeling and Exploitation Load Tests of the Suspended Route Slings Caused by Passage of the Locomotive at Various Speed along Mining Excavation

2022 ◽  
Vol 16 (1) ◽  
pp. 266-281
Author(s):  
Kazimierz Drozd ◽  
Aleksander Nieoczym
Keyword(s):  
PCI Journal ◽  
1991 ◽  
Vol 36 (4) ◽  
pp. 66-73
Author(s):  
Alex Aswad George Burnley
Keyword(s):  

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Zhijun Zhou ◽  
Shanshan Zhu ◽  
Xiang Kong ◽  
Jiangtao Lei ◽  
Tong Liu

The settlement calculation of postgrouting piles is complex and depends on the calculation method and parameters. Static load tests were conducted to compare the settlement characteristics of nongrouting and postgrouting piles, and three vital parameters in the layer-wise summation method were revised to predict the settlement of postgrouting piles. The elastic compression coefficient was deduced based on the Mindlin–Geddes method by considering the influence of the change in the pile side resistance distribution and end resistance ratio on the elastic compression after grouting. The relationship between the compression modulus and soil gravity stress and cone penetration resistance were established, respectively, using experimental data. The optimum value of the settlement empirical coefficient was determined using regional data. Finally, we used the postgrouting pile of the Wuqi–Dingbian expressway as a practical example. The results obtained from the layer-wise summation method after parametric optimization were close to the measured values. The results of this study provide reference data and guidance for the settlement calculation of postgrouting piles in this area.


2014 ◽  
Vol 1079-1080 ◽  
pp. 258-265
Author(s):  
Chen Ning Cai ◽  
Shan He ◽  
Li Na Liu ◽  
Shi Kun Ou

Thispaper presents an experimental study to strengthen an existing bridge usingpre-stressed carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer(GFRP) materials. The method using pre-stressed hybrid fiber reinforced polymer(HFRP) to strengthened structural members is an emerging pre-stressed strengtheningtechnology. In this study, experimental data selected from result of staticloading test conducted to hollow slabs with CFRP/GFRP has been compared with specimenswithout strengthening. Test results showed that the strengthening methoddeveloped in this study could effectively reduce the stress in hollow slab,improving the flexural rigidity and inhibiting the concrete from fracture.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1275 ◽  
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60–100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.


Author(s):  
Brent Phares ◽  
Yoon-Si Lee ◽  
Travis K. Hosteng ◽  
Jim Nelson

This paper presents a laboratory investigation on the performance of grouted rebar couplers with the connection details similar to those utilized on the precast concrete elements of the Keg Creek Bridge on US 6 in Iowa. The testing program consisted of a series of static load tests, a fatigue test, and evaluation of the chloride penetration resistance of laboratory specimens. The goal of this testing was to evaluate the ability of the grouted rebar couplers to develop flexural capacity at the joint between the precast elements as well as the durability of the connection. For structural load testing, seven full-scale specimens, each with #14 epoxy-coated rebars spliced by epoxy-coated grouted couplers, were fabricated and tested in three different loading cases: four-point bending, axial tension plus bending, and a cyclic test of the system in bending. The static load testing demonstrated that the applied axial load had a minimal effect on the formation of cracks and overall performance of the connection. When ultra-high performance concrete was used as a bedding grout, the initiation of crack was slightly delayed but no considerable improvement was observed in the magnitude of the crack width during loading or the crack closure on unloading. The results of the seventh specimen, tested in fatigue to 1 million cycles, showed little global displacement and crack width throughout the test, neither of which expanded measurably. No evidence of moisture or chloride penetration was detected at the grouted joint during the 6-month monitoring.


Sign in / Sign up

Export Citation Format

Share Document