scholarly journals Direct observation on surface charge of clay minerals flocculated by cationic by polyelectrolyte.

1986 ◽  
Vol 43 (9) ◽  
pp. 591-595
Author(s):  
Hajime SERITA ◽  
Norihiko KOHYAMA ◽  
Koichi MURAI
SPE Journal ◽  
2018 ◽  
Vol 23 (05) ◽  
pp. 1880-1898 ◽  
Author(s):  
Mohamed Ahmed El-Din Mahmoud

Summary Sandstone oil reservoirs consist of different clay minerals, such as kaolinite, illite, and chlorite. While these clay minerals can highly affect oil recovery from sandstone oil reservoirs, no attention has been given to investigating the effects of clay minerals during such oil recovery, and no solution has been introduced to alleviate the effects. In this study, and for the first time, the effect of chlorite clay-mineral content on the improved oil recovery (IOR) from different sandstone rock samples was investigated. A new solution was proposed to eliminate the effect of chlorite on the oil recovery from sandstone rocks. Different sandstone cores were used, such as Berea (BSS), Bandera (BND), Kentucky (KSS), and Scioto (SCS) sandstone rocks with different clay minerals. ζ-potential measurements were used to investigate the surface charge of the different clays and different sandstone rocks with different fluids. Fluids such as seawater (SW), low-salinity water (LSW), fresh water, and chelating agents were used. Diethylenetriaminepentaacetic acid (DTPA) chelating agent was introduced to mitigate the chlorite effect on oil recovery from sandstone rocks. The wettability was evaluated using contact-angle measurements and the Amott test for different solutions and different rocks in the presence of actual crude oil. Coreflooding experiments were conducted using these fluids with different sandstone rocks to identify the effect of chlorite on the oil recovery. Coreflooding experiments showed that sandstone cores with high chlorite content yielded the lowest oil recovery when SW and LSW were used. The effect of chlorite on the oil recovery from the two sandstone rocks was minimized with 3 wt% DTPA chelating agent. More oil was recovered in the case of DTPA because of the iron chelation from chlorite. ζ-potential showed that sandstone with high chlorite content has a surface charge close to zero in the case of SW and fresh water. In addition, contact-angle measurements showed that samples with high chlorite content have less water-wetness, which will reduce oil recovery. Contact-angle measurements on chlorite sheets showed that chlorite is oil-wet compared with mica at the same conditions. The addition of high-pH DTPA chelating agent sequestered the iron from the chlorite clay minerals and changed the surface charge to very high negative value, and the contact angle confirmed that the rock changed to water-wet after adding the chelating agent. The Amott index showed that adding DTPA increased the water-wetness for SCS that contains 4 wt% chlorite.


2000 ◽  
Vol 37 (2) ◽  
pp. 296-307 ◽  
Author(s):  
Loretta Y Li ◽  
Raymond S Li

The importance of the surface charge of clay minerals (fixed or variable) and the effect of H+ ions on the adsorption and removal of Pb2+ ions from contaminated soil are investigated using kaolinite (variable charge) and two illitic (fixed charge) soils with pH 3.9 and 9.2. The adsorption-desorption characteristics of Pb2+ ions were determined using batch equilibrium tests and acid leach tests with various acids used to leach the soils. Under the same adsorption conditions, illitic soil adsorbed much more Pb2+ ions than kaolinite. The difference is largely due to the surface charges on the clay minerals. Removal of Pb2+ ions from variable-charge minerals (e.g., kaolinite) requires much less effort than removal of Pb2+ ions from constant-charge minerals (e.g., illite). The surface charge of a clay mineral has an important effect. By increasing the number of H+ ions available in the soil system with a buffer solution such as NaOAc-HOAc, heavy metals adsorbed on the clay surface are expelled to pore water. The increase in H+ ions in the soil system also assists in dissolving any metal carbonates, thereby increasing the solubility of heavy metals in illitic soil. The more H+ ions available in the pore fluid, the more Pb2+ ions can be released from the system.Key words: clay minerals, sorption, desorption, heavy metal, hydrogen ion, electrokinetic, acid leach.


2018 ◽  
Vol 20 (25) ◽  
pp. 17226-17233 ◽  
Author(s):  
S. Jelavić ◽  
S. L. S. Stipp ◽  
N. Bovet

We show direct measurements of the composition in the interface between clay minerals and aqueous solutions containing organic ligands.


Nature ◽  
1996 ◽  
Vol 381 (6581) ◽  
pp. 398-400 ◽  
Author(s):  
Joseph M. Carpinelli ◽  
Hanno H. Weitering ◽  
E. Ward Plummer ◽  
Roland Stumpf

ACS Omega ◽  
2021 ◽  
Author(s):  
Isah Mohammed ◽  
Dhafer Al Shehri ◽  
Mohamed Mahmoud ◽  
Muhammad Shahzad Kamal ◽  
Olalekan Saheed Alade

2004 ◽  
Vol 6 (16) ◽  
pp. 4174-4184 ◽  
Author(s):  
Robin H. A. Ras ◽  
József Németh ◽  
Cliff T. Johnston ◽  
Elaine DiMasi ◽  
Imre Dékány ◽  
...  

Author(s):  
X. N. Zhang ◽  
A. Z. Zhao

The surface of soil colloids carries electric charges, and these surface charges are the basic cause for soil to possess a series of surface properties. Soil surface charges affect the chemical properties of the soil through varying the quantity of electric charge and the surface charge density. For example, adsorptions of cations and anions are caused by negative and positive surface charges of the soil, respectively. The amount of ions adsorbed is determined by the quantity of surface charge, whereas the tightness of adsorption is related to charge density. In addition, the migration of ions in soil, the formation of organo-mineral complexes,and the dispersion, flocculation, swelling, and shrinkage are all affected by surface charge properties of the soil. Therefore, surface charge properties have an important bearing on soil structure and plant nutrition. Variable charge soils are characterized by the high content of iron and aluminum oxides. The clay mineralogical composition is dominated by 1:1-type minerals, such as kaolinite. These two factors make the surface charge properties of variable charge soils distinctly different from those of constant charge soils of temperate regions which chiefly containin 2:1-type clay minerals. However, unlike the case for pure variable charge minerals, in variable charge soils there is generally the presence of a certain amount of 2:1-type clay minerals. Therefore, as a mixture of variable charge minerals and constant charge minerals, the surface charge properties of variable charge soils is more complicated. In this chapter, the origin and factors affecting surface charges of the soil as well as the relationship between these charges and soil type will be discussed. Despite the complexity in composition, a soil may be regarded as a mixed system consisting of constant charge surface materials and constant potential surface materials in different ratios (Anderson and Sposito, 1992; Gillman and Uehara, 1980). Examples of the former type such as montmorillonite and vermiculite carry permanent negative charges, while those of the latter type such as iron oxide and aluminum oxide carry variable charges. Commonly found constant charge clay minerals in soils include those layer silicates such as hydrous mica, vermiculite, montmorillonite, and chlorite.


Sign in / Sign up

Export Citation Format

Share Document