scholarly journals Comparative Study of Hydro-Magneto-Electric Regenerative Shock Absorber (HMERSA) with Two Outputs Hydraulic Generator Installed Series And Parallels

Author(s):  
Taufik Kurniawan ◽  
Harus Laksana Guntur
2015 ◽  
Vol 758 ◽  
pp. 45-50
Author(s):  
Harus Laksana Guntur ◽  
Wiwiek Hendrowati

This paper presents a comparative study of the damping force and energy absorbtion capacity of a typical conventional-viscous and a regenerative shock absorber for vehicle suspension. Regenerative shock absorber (RSA) is a shock absorber which can regenerate the dissipated vibration energy from vehicle suspension into electricity. In this research, a prototype of regenerative shock absorber was developed, its damping force and energy absorbtion capacity were tested, and the results were analized and compared with those of a typical conventional-viscous shock absorber. The regenerative and viscous shock absorber were compressed and extended in various excitation frequency using damping force testing equipment to obtain force-velocity and the force-displacement curves. The force-velocity and force-displacement curves indicate the damping force and energy absorbtion capacity of the shock absorber. The results show that the damping force of the typical-viscous shock absorber closed to linear at all exciation frequencies. For regenerative shock absorber, nonlinearity and large hysteresis area of the damping force occur at all excitation frequencies. Further, the energy absorbtion capacity of the typical-viscous shock absorber shows an elliptical area with the compression part bigger than the extension one, while those of the regenerative shock absorber shows an asymmetric square area, which indicates a smaller energy absorbtion capacity. These phenomena indicate the significant effect of implementing dry friction damper and elctrical damper to the characteristics of regenerative shock absorber.


2021 ◽  
Vol 295 ◽  
pp. 117020
Author(s):  
Hai Li ◽  
Peng Zheng ◽  
Tingsheng Zhang ◽  
Yingquan Zou ◽  
Yajia Pan ◽  
...  

Author(s):  
Dr. Seema Tiwari ◽  
Manish Kumar Singh ◽  
Amit Kumar ◽  

Author(s):  
Wanda Afnison ◽  
Erzeddin Alwi ◽  
Hasan Maksum ◽  
Bahrul Amin ◽  
M Yasep Setiawan

This research is a development of previous research entitled "Designing Regenerative Shock Absorber as a Vibration Energy Harvesting Tool on Vehicles" in the PUPT scheme funded by PNBP UNP 2017. In this study optimization of design oriented to energy generation was carried out while also paying attention to aspects driving comfort that might change due to the installation of a harvesting energy mechanism. One aspect of the change occurred in the type of magnet used, namely a ring type magnet with a type of neodymium material.From the test results obtained by changing the value of the efficiency of the shock absorber after the ERSA mechanism is installed by 2%, this condition also has an impact on the dissimilarity of the attenuation value obtained by 2% for the front-rear (left) and (right) wheels. In terms of generation voltage obtained the maximum generation voltage obtained is 25,600 mV. Based on the data obtained, it needs further development ERSA, especially in the aspect of the electromagnetic mechanism to optimize the generation of electrical energy.


2012 ◽  
Vol 157-158 ◽  
pp. 911-914 ◽  
Author(s):  
Zhi Gang Fang ◽  
Xue Xun Guo ◽  
Lin Xu ◽  
Jie Zhang

Hydraulic electromagnetic energy-regenerative shock absorber is a new kind of shock absorbers, who can perform the function of a standard shock while acting as an additional source of power. One of the core components of this new shock absorber is the valve system. And its function is to rectify the direction of the oil flow. Then the oil can flow through the hydraulic motor from one port only no matter in expansion stroke or compression stroke. The research focused on the compactness, sensitivity and energy recovery rate of two different valve systems. And the results showed that the valve system composed of check valves better matched the hydraulic electromagnetic energy-regenerative shock absorber.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Peng Zheng ◽  
Ruichen Wang ◽  
Jingwei Gao ◽  
Xiang Zhang

With the increasingly prominent energy issues, regenerative shock absorber has attracted intensive attention in last two decades for the development of structure design. However, the researchers sometimes concentrate on conceptual designs without considering optimal parameter refinements. This paper proposes a regenerative shock absorber called the “hydraulic electric regenerative shock absorber (HERSA)” which includes an analytical regeneration performance parameters optimisation approach to promote the regeneration efficiency and regenerated power. The developed HERSA model is able to convert oscillatory motion into unidirectional rotary motion through the alteration of hydraulic flow while recovering power by a generator. The proposed model is also capable of obtaining the optimal parameters at certain condition, as well as providing the flexibility of different component combinations to match specific system need. The results demonstrate that the proposed model can effectively decide the optimal parameters in the system, and also the recoverable power can achieve average power of 331 W at 1 Hz-25 mm sinusoidal excitation in the system, which is approximately 65% efficiency. This study can be further used to guide prototype design in future study.


Author(s):  
Sijing Guo ◽  
Lin Xu ◽  
Yilun Liu ◽  
Xuexun Guo ◽  
Lei Zuo

Energy-Harvesting Shock Absorber (EHSA), as a large-scale energy-harvesting mechanism for recovering suspension vibration energy, has been studied for years. A design of the regenerative shock absorber with Mechanical Motion Rectifier (MMR) has been proved to be more reliable and efficient. This paper reports a comprehensive study of the influence of MMR-based Energy-Harvesting Shock Absorber (MMR-EHSA) on vehicle dynamics performances. Models of MMR-EHSA and vehicle with MMR-EHSA with two degrees of freedom are created. Simulations are conducted on five typical vehicles, including passenger car, bus and three types of trucks. The ride characteristics of comfort, road handling and energy recovery are evaluated on these vehicles under various MMR rotational inertia and harvesting damping. The simulation results show that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously under certain conditions over the traditional shock absorbers, which broadens our knowledge of MMR-EHSA’s applicable scenarios.


2013 ◽  
Vol 798-799 ◽  
pp. 307-310
Author(s):  
Xiao Lin Zi ◽  
Si Jing Guo ◽  
Xue Xun Guo ◽  
Jing Pan

Hydraulic electromagnetic energy-regenerative shock absorber (HESA) is a new type of shock absorber which can regenerate a portion of energy dissipated as thermal energy in conventional shock absorber. This paper briefly describes HESAs working principle, uses AMESim, a hydraulic simulation software, to get damping characteristic of HESA as well as conventional passive shock absorber by doing some simulation tests, and contrasts the two consequents. Simulation results show that HESA has its unique damping characteristic, and its regenerative characteristic performs well.


Sign in / Sign up

Export Citation Format

Share Document