scholarly journals Non-Inverting Cascaded Bidirectional Buck-Boost DC-DC Converter with Average Current Mode Control for Lithium-Ion Battery Charger

Author(s):  
Heri Suryoatmojo ◽  
Indra Anugrah Pratama ◽  
Soedibyo .

In order to develop renewable energy, it also needs to enhance the developing of supporting elements. For example, lithium-ion batteries as a component of energy storage. Lithium-ion batteries (Li-ion) have been chosen as energy storage devices for portable equipment, unmanned Aerial Vehicle (UAV) and grid storage systems. But there is a problem such as the process of charging the battery for UAV. Conventional converters used in those chargers have disadvantages such as limited power, lower voltage gain and also high current stress. Therefore, such converters are not efficient to be used for charging the battery. This paper proposes a cascaded bidirectional buck-boost converter for charging the battery. This converter can be operated bidirectional and have better rated power and higher voltage gain. Also, this topology has the same polarity with the input. From the test results, the converter can work in either forward or backward power flow. This converter is working in both buck or boost mode and has an efficiency of 83% in buck mode and 81% for boost mode. The charging process is about 83 minutes until SOC approximately 90 – 95.Keywords: battery charger, cascaded bidirectional buck – boost converter, constant current, li-ion introduction.

Nanoscale ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 3677-3685 ◽  
Author(s):  
Peng Cai ◽  
Kangyu Zou ◽  
Guoqiang Zou ◽  
Hongshuai Hou ◽  
Xiaobo Ji

Lithium ion capacitors (LICs) are regarded as one of the most promising energy storage devices since they can bridge the gap between lithium ion batteries and supercapacitors.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 487
Author(s):  
Tae-Kue Kim ◽  
Sung-Chun Moon

The growth of the lithium-ion battery market is accelerating. Although they are widely used in various fields, ranging from mobile devices to large-capacity energy storage devices, stability has always been a problem, which is a critical disadvantage of lithium-ion batteries. If the battery is unstable, which usually occurs at the end of its life, problems such as overheating and overcurrent during charge-discharge increase. In this paper, we propose a method to accurately predict battery life in order to secure battery stability. Unlike the existing methods, we propose a method of assessing the life of a battery by estimating the irreversible energy from the basic law of entropy using voltage, current, and time in a realistic dimension. The life estimation accuracy using the proposed method was at least 91.6%, and the accuracy was higher than 94% when considering the actual used range. The experimental results proved that the proposed method is a practical and effective method for estimating the life of lithium-ion batteries.


2012 ◽  
Vol 441 ◽  
pp. 231-234 ◽  
Author(s):  
Xiang Wu Zhang ◽  
Li Wen Ji ◽  
Zhan Lin ◽  
Ying Li

Research and development in textiles have gone beyond the conventional applications as clothing and furnishing materials; for example, the convergence of textiles, nanotechnologies, and energy science opens up the opportunity to take on one of the major challenges in the 21st century energy. This presentation addresses the development of high-energy lithium-ion batteries using electrospun nanofibers.


2013 ◽  
Vol 2 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Ahmad Rahmoun ◽  
Helmuth Biechl ◽  
Argo Rosin

AbstractThe rapid developments in the field of electrochemistry, enabled lithium-ion batteries to achieve a very good position among all the other types of energy storage devices. Therefore they became an essential component in most of the modern portable and stationary energy storage applications, where the specific energy and the life time play an important role. In order to analyze and optimize lithium-ion batteries an accurate battery model for the dynamic behavior is required. At the beginning of this paper four different categories of electrical models for li-ion cells are presented. In the next step a comparison between equivalent circuit diagrams and fractional rational functions with the complex variable s is shown for lithium-ion battery modeling. It is described how to identify the parameters of the models in the time domain and also in frequency domain. The validation of the different models is made for high and low dynamic current profiles. In the first step the dependency of all model parameters on the temperature and on the battery age is neglected. These effects will be taken into account in the continuation of this work


Nanoscale ◽  
2021 ◽  
Author(s):  
Yuwan Dong ◽  
Panzhe Su ◽  
Guanjie He ◽  
Huiling Zhao ◽  
Ying Bai

With high theoretical capacity and tap density, LiCoO2 (LCO) cathode has been extensively utilized in lithium-ion batteries (LIBs) for energy storage devices. However, the bottleneck of structural and interfacial instabilities...


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 5958-5992
Author(s):  
Jahidul Islam ◽  
Faisal I. Chowdhury ◽  
Join Uddin ◽  
Rifat Amin ◽  
Jamal Uddin

With the rapid propagation of flexible electronic devices, flexible lithium-ion batteries are emerging as the most promising energy supplier among all of the energy storage devices due to high energy and power densities with good cycling stability.


2016 ◽  
Vol 4 (43) ◽  
pp. 16771-16800 ◽  
Author(s):  
Umair Gulzar ◽  
Subrahmanyam Goriparti ◽  
Ermanno Miele ◽  
Tao Li ◽  
Giulia Maidecchi ◽  
...  

In this work we have reviewed the state of the art of energy storage devices for textile applications.


2013 ◽  
Author(s):  
Soumik Banerjee

Based on ever-growing societal demand for stable energy supply, recent times have witnessed an increasing emphasis on developing energy storage devices such as batteries with improved specific energy and specific power. Among the myriad energy-storage technologies, rechargeable lithium ion batteries are widely used as energy sources for a range of portable electronic devices because of their relatively high specific energy storage capabilities [1]. However, the highest energy storage capacity achieved by a state-of-the-art lithium ion battery is too low to meet current demands in larger applications such as in the automotive industry [1]. The limitation is due, in part, to the limited ionic conductivity of currently used organic electrolytes coupled with their volatility, electrochemical instability and flammability, which raises safety concerns. The development of new generation of lithium ion batteries with significantly improved energy storage would require the selection of novel electrolyte materials with improved performance without compromising on safety standards. In recent years, there has been growing interest in the development of room temperature ionic liquids because they have extremely low vapor pressure, are stable at high temperatures, are highly resistant to oxidation and reduction, possess high ionic conductivity and have tunable electrochemical properties. However, the ionic conductivity of ionic liquids doped with lithium salt is extremely sensitive to the molecular structure of the ions as well as the extent of coordination between neighboring ionic species. In an effort to understand how atomistic interactions determine transport properties of ionic liquids, in the current study, we simulated lithium salt doped pyrrolidinium based ionic liquids using fundamental atomistic simulations. Properties such as density and self-diffusion coefficients were determined from molecular dynamics simulations and compared to experimental data to validate our model. Our simulations indicate that the mobility of lithium ions is limited due to association with multiple salt anions.


2021 ◽  
Author(s):  
Adil Saleem ◽  
Muhammad K. Majeed ◽  
Shah-Iram Niaz ◽  
Muhammad Iqbal ◽  
Muhammad Akhlaq ◽  
...  

Transition metal oxides (TMO) have great potential applications in efficient energy storage devices for their commercial possibilities in lithium-ion batteries (LIBs).


Sign in / Sign up

Export Citation Format

Share Document