scholarly journals Evaluation of Equivalent Circuit Diagrams and Transfer Functions for Modeling of Lithium-Ion Batteries

2013 ◽  
Vol 2 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Ahmad Rahmoun ◽  
Helmuth Biechl ◽  
Argo Rosin

AbstractThe rapid developments in the field of electrochemistry, enabled lithium-ion batteries to achieve a very good position among all the other types of energy storage devices. Therefore they became an essential component in most of the modern portable and stationary energy storage applications, where the specific energy and the life time play an important role. In order to analyze and optimize lithium-ion batteries an accurate battery model for the dynamic behavior is required. At the beginning of this paper four different categories of electrical models for li-ion cells are presented. In the next step a comparison between equivalent circuit diagrams and fractional rational functions with the complex variable s is shown for lithium-ion battery modeling. It is described how to identify the parameters of the models in the time domain and also in frequency domain. The validation of the different models is made for high and low dynamic current profiles. In the first step the dependency of all model parameters on the temperature and on the battery age is neglected. These effects will be taken into account in the continuation of this work

Author(s):  
Heri Suryoatmojo ◽  
Indra Anugrah Pratama ◽  
Soedibyo .

In order to develop renewable energy, it also needs to enhance the developing of supporting elements. For example, lithium-ion batteries as a component of energy storage. Lithium-ion batteries (Li-ion) have been chosen as energy storage devices for portable equipment, unmanned Aerial Vehicle (UAV) and grid storage systems. But there is a problem such as the process of charging the battery for UAV. Conventional converters used in those chargers have disadvantages such as limited power, lower voltage gain and also high current stress. Therefore, such converters are not efficient to be used for charging the battery. This paper proposes a cascaded bidirectional buck-boost converter for charging the battery. This converter can be operated bidirectional and have better rated power and higher voltage gain. Also, this topology has the same polarity with the input. From the test results, the converter can work in either forward or backward power flow. This converter is working in both buck or boost mode and has an efficiency of 83% in buck mode and 81% for boost mode. The charging process is about 83 minutes until SOC approximately 90 – 95.Keywords: battery charger, cascaded bidirectional buck – boost converter, constant current, li-ion introduction.


2012 ◽  
Vol 441 ◽  
pp. 231-234 ◽  
Author(s):  
Xiang Wu Zhang ◽  
Li Wen Ji ◽  
Zhan Lin ◽  
Ying Li

Research and development in textiles have gone beyond the conventional applications as clothing and furnishing materials; for example, the convergence of textiles, nanotechnologies, and energy science opens up the opportunity to take on one of the major challenges in the 21st century energy. This presentation addresses the development of high-energy lithium-ion batteries using electrospun nanofibers.


Nanoscale ◽  
2021 ◽  
Author(s):  
Yuwan Dong ◽  
Panzhe Su ◽  
Guanjie He ◽  
Huiling Zhao ◽  
Ying Bai

With high theoretical capacity and tap density, LiCoO2 (LCO) cathode has been extensively utilized in lithium-ion batteries (LIBs) for energy storage devices. However, the bottleneck of structural and interfacial instabilities...


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 5958-5992
Author(s):  
Jahidul Islam ◽  
Faisal I. Chowdhury ◽  
Join Uddin ◽  
Rifat Amin ◽  
Jamal Uddin

With the rapid propagation of flexible electronic devices, flexible lithium-ion batteries are emerging as the most promising energy supplier among all of the energy storage devices due to high energy and power densities with good cycling stability.


2021 ◽  
Vol 6 (1) ◽  
pp. 31-39
Author(s):  
Mustafa Şahin ◽  

The need for energy storage devices especially in renewable energy applications has increased the use of supercapacitors. Accordingly, several supercapacitor models have been proposed in previous researches. Nevertheless, most of them require an intensive test to obtain the model parameters. These may not be suitable for an initial simulation study, where a simple model based on the datasheet is required to evaluate the system performance before building the hardware prototype. A simplified electrical circuit model for a supercapacitor (SC) based on the voltage-current equation is proposed in this paper to address this issue. This model doesn’t need an intensive test for accuracy. The structural simplicity and decent modelling accuracy make the equivalent electrical circuit model very suitable for power electronic applications and real-time energy management simulations. The parameters of the proposed model can be obtained from the datasheets value with a minimum test requirement. The experimental method to provide the parameters of the supercapacitor equivalent circuit is described. Based on the proposed method, the supercapacitor model is built in Matlab/Simulink, and the characteristics of equivalent series resistance (ESR) measurement and cycle life are compared with datasheets. The simulation results have verified that the proposed model can be applied to simulate the behaviour of the supercapacitor in most energy and power applications for a short time of energy storage. A supercapacitor test circuit is given to test the charge and discharge of supercapacitor modules. The experimental results are suitable for simulation results.


Sign in / Sign up

Export Citation Format

Share Document