Conventional glass-ionomer cements: a guide for practitioners

Dental Update ◽  
2021 ◽  
Vol 48 (8) ◽  
pp. 643-650
Author(s):  
Petros Mylonas ◽  
Jing Zhang ◽  
Avijit Banerjee

Glass-polyalkenoate cements, also known as glass-ionomer cements (GICs), are one of the most commonly used bio-interactive restorative dental materials, having been available since the 1970s. With the promotion of minimally invasive operative dentistry (MID), and the reduction in the use of dental amalgam worldwide, the popularity of these materials has grown significantly in recent years. This article outlines the basics and clinical importance of GIC material science, and provides an overview of their use in restorative dentistry. CPD/Clinical Relevance: GICs are versatile dental biomaterials that require correct case selection, material handling and placement technique to ensure optimal clinical success.

2000 ◽  
Vol os7 (1) ◽  
pp. 25-28 ◽  
Author(s):  
David Brown

Questions about the materials which are in current use are posed and answered in this review, which speculates about the sort of dental materials we will be using, or would like to use in the next century. Consideration is given to the merits and failings of dental amalgam, composites and glass-ionomer cements prior to laying down the requirements of the ultimate direct filling material. The case for the continued use of dental alloys for large restorations is discussed, and new ways of forming these are described. The use of many cunning techniques to improve the resistance of dental ceramics to catastrophic failure is reported, and a general improvement in both the denture bases and orthodontic appliances of the future is predicted.


Author(s):  
Débora Michelle Gonçalves de Amorim ◽  
Aretha Heitor Veríssimo ◽  
Anne Kaline Claudino Ribeiro ◽  
Rodrigo Othávio de Assunção e Souza ◽  
Isauremi Vieira de Assunção ◽  
...  

AbstractTo investigate the impact of radiotherapy on surface properties of restorative dental materials. A conventional resin composite—CRC (Aura Enamel), a bulk-fill resin composite—BFRC (Aura Bulk-fill), a conventional glass ionomer cement—CGIC (Riva self cure), and a resin-modified glass ionomer cement—RMGIC (Riva light cure) were tested. Forty disc-shaped samples from each material (8 mm diameter × 2 mm thickness) (n = 10) were produced according to manufacturer directions and then stored in water distilled for 24 h. Surface wettability (water contact angle), Vickers microhardness, and micromorphology through scanning electron microscopy (SEM) before and after exposition to ionizing radiation (60 Gy) were obtained. The data were statistically evaluated using the two-way ANOVA and Tukey posthoc test (p < 0.05). Baseline and post-radiation values of contact angles were statistically similar for CRC, BFRC, and RMGIC, whilst post-radiation values of contact angles were statistically lower than baseline ones for CGIC. Exposition to ionizing radiation statistically increased the microhardness of CRC, and statistically decreased the microhardness of CGIC. The surface micromorphology of all materials was changed post-radiation. Exposure to ionizing radiation negatively affected the conventional glass ionomer tested, while did not alter or improved surface properties testing of the resin composites and the resin-modified glass ionomer cement tested.


2018 ◽  
Vol 19 (5) ◽  
pp. 104 ◽  
Author(s):  
M R R Silva ◽  
N J C Sena ◽  
D A Cunha ◽  
L C Souza ◽  
N S Rodrigues ◽  
...  

O objetivo deste trabalho é realizar uma revisão de literatura sobre os materiais que estão sendo associados ao cimento de ionômero de vidro (CIV), visando melhorar suas propriedades mecânicas e físico-químicas. Foi realizada uma seleção de artigos científicos nas bases de dados PubMed, Europe PMC e ScienceDirect, usando os descritores Glass Ionomer Cements, Dental Materials e Dental Composite. O critério de inclusão foi estudo in vitro acerca do tema proposto e os de exclusão foram revisões de literatura e estudos clínicos. Foram encontrados 130 artigos, publicados entre os anos de 2012 a 2017, dos quais foram selecionados 10. De acordo com esta revisão, o uso de substâncias naturais, tais como os nanocristais de celulose, melhorou a resistência à compressão e diametral, módulo de elasticidade e resistência ao desgaste do CIV. Já a associação com o propólis resultou na diminuição significativa da resistência à compressão e o aumento da solubilidade do CIV. O uso das nanopartículas de AlO, ZrO e TiO2 foi avaliado, mostrando redução da porosidade dos cimentos ionoméricos e aumento da resistência à compressão. Quando o Nanoclay (montmorillonita de grau polimérico) foi adicionado à porção líquida do CIV, suas propriedades mecânicas melhoraram, entretanto a resistência à tensão diametral não apresentou melhora estatística significante. Portanto, o uso de substâncias associadas ao CIV mostrou melhora de suas propriedades, principalmente quando os nanocristais de celulose foram utilizados, podendo representar um novo e promissor material de restauração dentária.Palavras-chave: Cimentos de Ionômeros de Vidro. Materiais Dentários. Propriedades Físicas e Químicas.


2016 ◽  
Vol 22 (2) ◽  
pp. 1160-1165 ◽  
Author(s):  
Maya G. Lyapina ◽  
◽  
Mariana Tzekova ◽  
Maria Dencheva ◽  
Assya Krasteva ◽  
...  

2019 ◽  
Vol 44 (2) ◽  
pp. 26-30
Author(s):  
Bojan Petrović ◽  
Evgenija Marković ◽  
Tamara Perić ◽  
Sanja Kojić

Changes in composition and new material characteristics require verification in clinical and experimental studies. Investigating glass-ionomer cements under laboratory conditions encounters problems in interpreting the results and in comparing them with other types of materials tested in the same way. As the connection between the glass-ionomer cements and the dental tissues is delicate, it is often the case that the impact of fractures and other artifacts is either underestimated or over-dimensioned when interpreting the results. A critical review was performed, with defining the main problems regarding the usage of SEM, EDX and nanoindentation techniques in glass-ionomer based materials evaluation.


1987 ◽  
Vol 66 (12) ◽  
pp. 1758-1764 ◽  
Author(s):  
L.G. Terkla ◽  
A.C. Brown ◽  
A.P. Hainisch ◽  
J.C. Mitchem

The objectives of this investigation were (1) to develop a sensitive laboratory system that simulates the physiological and clinical conditions of a prepared human tooth in order to facilitate the determination of the bonding and sealing efficacies of restorative dental materials and (2) to conduct experiments with two dentin bonding agents, two posterior composite resin restorative materials (hybrid and micro filled), and a glass-ionomer type II filling material. The system functioned well and provided data to indicate that, after margination, the two posterior composite resin restorative materials performed equally and both performed better than the glass-ionomer filling material; none of the materials provided a perfect seal immediately after insertion, although some restorations demonstrated perfect seals from 16 hours to 28 days after placement; the seal of the glass-ionomer material improved after 28 days of storage in buffer solution; each successive step in the respective composite resin procedures improved the seal except in one case for the micro filled resin.


2016 ◽  
Vol 17 (4) ◽  
pp. 331-336 ◽  
Author(s):  
Mohammed Almuhaiza

ABSTRACT Glass-ionomer cements (GICs) are mainstream restorative materials that are bioactive and have a wide range of uses, such as lining, bonding, sealing, luting or restoring a tooth. Although the major characteristics of GICs for the wider applications in dentistry are adhesion to tooth structure, fluoride releasing capacity and tooth-colored restorations, the sensitivity to moisture, inherent opacity, long-term wear and strength are not as adequate as desired. They have undergone remarkable changes in their composition, such as the addition of metallic ions or resin components to their composition, which contributed to improve their physical properties and diversified their use as a restorative material of great clinical applicability. The lightcured polymer reinforced materials appear to have substantial benefits, while retaining the advantages of fluoride release and adhesion. Further research should be directed towards improving the properties, such as strength and esthetics without altering its inherent qualities, such as adhesion and fluoride releasing capabilities. How to cite this article Almuhaiza M. Glass-ionomer Cements in Restorative Dentistry: A Critical Appraisal. J Contemp Dent Pract 2016;17(4):331-336.


Sign in / Sign up

Export Citation Format

Share Document