scholarly journals Effects of ionizing radiation on surface properties of current restorative dental materials

Author(s):  
Débora Michelle Gonçalves de Amorim ◽  
Aretha Heitor Veríssimo ◽  
Anne Kaline Claudino Ribeiro ◽  
Rodrigo Othávio de Assunção e Souza ◽  
Isauremi Vieira de Assunção ◽  
...  

AbstractTo investigate the impact of radiotherapy on surface properties of restorative dental materials. A conventional resin composite—CRC (Aura Enamel), a bulk-fill resin composite—BFRC (Aura Bulk-fill), a conventional glass ionomer cement—CGIC (Riva self cure), and a resin-modified glass ionomer cement—RMGIC (Riva light cure) were tested. Forty disc-shaped samples from each material (8 mm diameter × 2 mm thickness) (n = 10) were produced according to manufacturer directions and then stored in water distilled for 24 h. Surface wettability (water contact angle), Vickers microhardness, and micromorphology through scanning electron microscopy (SEM) before and after exposition to ionizing radiation (60 Gy) were obtained. The data were statistically evaluated using the two-way ANOVA and Tukey posthoc test (p < 0.05). Baseline and post-radiation values of contact angles were statistically similar for CRC, BFRC, and RMGIC, whilst post-radiation values of contact angles were statistically lower than baseline ones for CGIC. Exposition to ionizing radiation statistically increased the microhardness of CRC, and statistically decreased the microhardness of CGIC. The surface micromorphology of all materials was changed post-radiation. Exposure to ionizing radiation negatively affected the conventional glass ionomer tested, while did not alter or improved surface properties testing of the resin composites and the resin-modified glass ionomer cement tested.

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2313
Author(s):  
Philippe Francois ◽  
Vincent Fouquet ◽  
Jean-Pierre Attal ◽  
Elisabeth Dursun

Resin composite and glass ionomer cement (GIC) are the most commonly used dental materials to perform direct restorations. Both have specific characteristics that explain their popularity and their limits. More than 20 years ago, the first attempt (followed by others) to combine the advantages of these two families was performed with compomers, but it was not very successful. Recently, new formulations (also called ‘smart materials’) with claimed ion release properties have been proposed under different family names, but there are few studies on them and explanations of their chemistries. This comprehensive review aims to gather the compositions; the setting reactions; the mechanical, self-adhesive, and potential bulk-fill properties; and the ion release abilities of the large existing families of fluoride-releasing restorative materials and the new restorative materials to precisely describe their characteristics, their eventual bioactivities, and classify them for an improved understanding of these materials. Based on this work, the whole GIC family, including resin-modified and highly viscous formulations, was found to be bioactive. Cention N (Ivoclar Vivadent, AG, Schaan, Lietschentein) is the first commercially available bioactive resin composite.


2020 ◽  
Vol 8 (02) ◽  
pp. 49-54
Author(s):  
Salil Mehra ◽  
Ashu K. Gupta ◽  
Bhanu Pratap Singh ◽  
Mandeep Kaur ◽  
Ashwath Kumar

Abstract Introduction The aim of the current study was to evaluate shear bond strength of resin composite bonded to Theracal LC, Biodentine, and resin-modified glass ionomer cement (RMGIC) using universal adhesive and mode of fracture. Materials and Methods A total of 50 caries-free maxillary and mandibular molars extracted were taken; occlusal cavities were prepared, mounted in acrylic blocks, and divided into five groups based on the liner used. Group 1: Biodentine liner placed into the cavity and bonding agent and resin composite applied after 12 minutes. Group 2: Biodentine liner placed into the cavity and bonding agent and resin composite applied after 14 days. Group 3: RMGIC liner placed into the cavity and bonding agent and resin composite applied immediately. Group 4: RMGIC liner placed into the cavity and bonding agent and resin composite applied after 7 days. Group 5: Theracal LC liner placed into the cavity and bonding agent and resin composite applied immediately. Each sample was bonded to resin composite using universal adhesive. Shear bond strength analysis was performed at a cross-head speed of 0.1 mm/min. Statistical Analysis  Statistical analysis was performed with one-way analysis of variance and posthoc Bonferroni test using SPSS version 22.0. Results and Conclusion Biodentine liner when bonded immediately to resin composite showed minimum shear bond strength. RMGIC when bonded to resin composite after 7 days showed maximum shear bond strength. Mode of fracture was predominantly cohesive in groups having Biodentine and Theracal LC as liner.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1700
Author(s):  
Atsushi Kameyama ◽  
Aoi Saito ◽  
Akiko Haruyama ◽  
Tomoaki Komada ◽  
Setsuko Sugiyama ◽  
...  

This study aimed to examine the marginal seal between various commercial temporary restorative materials and exposed dentin/built-up composite. Sixty bovine incisors were cut above the cemento-enamel junction, and half of the dentin was removed to form a step, which was built up using flowable resin composite. The root canals were irrigated, filled with calcium hydroxide, and sealed using one of six temporary sealing materials (hydraulic temporary restorative material, temporary stopping material, zinc oxide eugenol cement, glass-ionomer cement, auto-cured resin-based temporary restorative material, and light-cured resin-based temporary restorative material) (n = 10 for each material). The samples were thermocycled 500 times and immersed in an aqueous solution of methylene blue. After 2 days, they were cut along the long axis of the tooth and the depth of dye penetration was measured at the dentin side and the built-up composite side. For the margins of the pre-endodontic resin composite build-up, the two resin-based temporary restorative materials showed excellent sealing. Hydraulic temporary restorative material had a moderate sealing effect, but the sealing effect of both zinc oxide eugenol cement and glass-ionomer cement was poorer.


2013 ◽  
Vol 37 (4) ◽  
pp. 403-406 ◽  
Author(s):  
S Tamilselvam ◽  
MJ Divyanand ◽  
P Neelakantan

Objective: This aim of this study was at compare the fibroblast cytotoxicicty of four restorative materials - a conventional glass ionomer cement (GC Fuji Type II GIC), a ceramic reinforced glass ionomer cement (Amalgomer), a giomer (Beautifil II) and a resin composite (Filtek Z350) at three different time periods (24, 48 and 72 hours). Method: The succinyl dehydrogenase (MTT) assay was employed. Cylindrical specimens of each material (n=15) were prepared and stored in Dulbecco's modified Eagle medium, following which L929 fibroblasts were cultured in 96 well plates. After 24 hours of incubation, the MTT assay was performed to detect the cell viability. The method was repeated after 48 and 72 hours. The impact of materials and exposure times on cytotoxicity of fibroblasts was statistically analyzed using two way ANOVA (P=0.05). Results: Both time and material had an impact on cell viability, with giomer demonstrating the maximum cell viability at all time periods. The cell viability in the giomer group was significantly different from all other materials at 24 and 72 hours (P&lt;0.05), while at 48 hours giomer was significantly different only with resin composite (P&lt;0.05). Conclusions: Giomers showed better biocompatibility than conventional and ceramic reinforced glass ionomer cements and, resin composite. Ceramic reinforced glass ionomer demonstrated superior biocompatibility compared to conventional glass ionomer.


2019 ◽  
Vol 7 (1) ◽  
pp. 8
Author(s):  
Mohammad Hammo DDS ◽  
Mazen Doumani DDS. MSc. ◽  
Adnan Habib DDS. MSc. PhD

The main goal of vital pulp therapy is to preserve and maintain pulpal health in teeth that have been exposed to caries, trauma, and restorative procedures. This type of endodontic treatment is very important in young permanent teeth that have not reached their complete length and exhibit thin-walled roots and wide open apices. The developments in knowledge of pulpal physiology and immunology, beside to newly introduced dental materials, have changed the treatment approaches for teeth with involved pulps. This report describes a case of a young patient in whom maxillary right central incisor suffered crown fractures because of a traumatic accident. Pulpotomy with MTA were performed in order to achieve apexogenesis and the tooth was restored with a glass ionomer cement and composite resin. The patient was reviewed over 4years. 


2009 ◽  
Vol 34 (4) ◽  
pp. 467-471 ◽  
Author(s):  
V. Gopikrishna ◽  
M. Abarajithan ◽  
J. Krithikadatta ◽  
D. Kandaswamy

Clinical Relevance The bond strength of resin composite to glass-ionomer cement can be enhanced when a self-etching primer is employed over unset GIC or when a glass-ionomer based adhesive is employed over set GIC when compared to using a total-etch adhesive.


2007 ◽  
Vol 86 (5) ◽  
pp. 431-435 ◽  
Author(s):  
H.K. Yip ◽  
J. Guo ◽  
W.H.S. Wong

The prevalence of root-surface caries is increasing. We hypothesized that some restorative materials are protective against cariogenic challenge on root surfaces. Our goal was to study the effects of different restorative materials on root surfaces incubated with an oral biofilm generated in an artificial mouth. A biofilm of Streptococcus mutans, Streptococcus sobrinus, Lactobacillus rhamnosus, and Actinomyces naeslundii was co-cultured for 21 days on 24 glass-ionomer cement, resin-modified glass-ionomer cement, or resin-composite-restored root surfaces. These surfaces were then examined with Fourier transform infrared spectroscopy and scanning electron energy-dispersive spectroscopy. Only glass-ionomer restorations showed a significant increase in log calcium-to-phosphorus ratio (P < 0.01), and a significantly lower log amide I-to-hydrogen phosphate ratio on the root surface after incubation in the artificial mouth. Glass-ionomer restoratives conferred a preventive effect on the root surfaces against initial cariogenic challenge with a mixed-species oral biofilm without therapeutic intervention.


2019 ◽  
Vol 25 (2) ◽  
pp. 72-81 ◽  
Author(s):  
Ali N. Alobiedy ◽  
Ali H. Alhille ◽  
Ahmed R. Al-Hamaoy

The aim of this work is to enhance the mechanical properties of the glass ionomer cement GIC (dental materials) by adding Zirconium Oxide ZrO2 in both micro and nano particles. GIC were mixed with (3, 5 and 7) wt% of both ZrO2 micro and nanoparticles separately. Compressive strength (CS), biaxial flexural strength (BFS), Vickers Microhardness (VH) and wear rate losses (WR) were investigated. The maximum compression strength was 122.31 MPa with 5 wt. % ZrO2 micro particle, while 3wt% nanoparticles give highest Microhardness and biaxial flexural strength of 88.8 VHN and 35.79 MPa respectively. The minimum wear rate losses were 3.776µg/m with 7 wt. % ZrO2 nanoparticle. GIC-containing ZrO2 micro and nanoparticles is a promising restorative material with improved mechanical properties expect wear rate losses.  


e-GIGI ◽  
2015 ◽  
Vol 3 (2) ◽  
Author(s):  
Dewi Y. Anang ◽  
Ni Wayan Mariati ◽  
Christy N. Mintjelungan

Abstract: Resin composite has been known since the sixtieth generation and generally it is known as the dentists’ cosmetic restorative material. Amalgam is the oldest restorative material and it is famous due to its mechanical strength, endurance, and less expensive. Glass ionomer cement is an isochromatic tooth dentifrice; its main component is liquid consisted of water and polyacid, and a kind of fluoroaluminosilicate glass powder. This study aimed to obtain the profile of patients using dental restorative composite at the RSGM Manado in 2014. This was a descriptive retrospective study. There were 400 dental samples from the medical record categorized according to gender, age, kinds of treatment, and occupation. The results showed that dental treatment with filling was most frequent among females (65%) compared to males (35%). Most of the subjects (70%) were 21-30 years old. Moreover, most of the subjects (62.5%) used amalgam as the restorative material.Keywords: restorative material, composite resin, amalgam, GICAbstrak: Resin komposit ialah tumpatan pada generasi ke 60-an, dan secara umum dikenal sebagai bahan tumpatan kosmetik dentis. Amalgam merupakan bahan restorasi tertua dan cukup terkenal di masyarakat luas oleh karena kekuatan, daya tahan, dan harganya yang relatif murah. Glass Ionomer Cement ialah bahan tambal sewarna gigi yang komponen utamanya terdiri dari likuid yang merupakan gabungan air dengan polyacid (Asam poliakrilat, maleat, itakonat, tartarat) dan bubuk berupa fluoroaluminosilicate glass. Penelitian ini bertujuan untuk mengetahui gambaran pasien yang menggunakan tumpatan gigi di RSGM Unsrat pada tahun 2014. Jenis penelitian ini deskriptif retrospektif. Jumlah data penelitian yang didapat yaitu 400 sampel data dental dari rekam medik dan dikategorikan sesuai jenis kelamin, usia, jenis perawatan dan pekerjaan. Hasil penelitian menunjukkan perawatan dengan bahan tumpatan lebih sering dilakukan oleh pasien berjenis kelamin perempuan (65%) dibandingkan laki-laki (35%). Distribusi subyek terbanyak pada usia 21-30 tahun (70%). Sebagian besar (62,5%) menggunakan bahan tumpatan amalgam.Kata kunci: tumpatan, resin komposit, amalgam, GIC


Sign in / Sign up

Export Citation Format

Share Document