restorative dental materials
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 28)

H-INDEX

12
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7293
Author(s):  
Lucian Toma Ciocan ◽  
Jana Ghitman ◽  
Vlad Gabriel Vasilescu ◽  
Horia Iovu

The tremendous technological and dental material progress led to a progressive advancement of treatment technologies and materials in restorative dentistry and prosthodontics. In this approach, CAD/CAM restorations have proven to be valuable restorative dental materials in both provisional and definitive restoration, owing to multifarious design, improved and highly tunable mechanical, physical and morphological properties. Thus far, the dentistry market offers a wide range of CAD/CAM restorative dental materials with highly sophisticated design and proper characteristics for a particular clinical problem or multiple dentistry purposes. The main goal of this research study was to comparatively investigate the micro-mechanical properties of various CAD/CAM restorations, which are presented on the market and used in clinical dentistry. Among the investigated dental specimens, hybrid ceramic-based CAD/CAM presented the highest micro-mechanical properties, followed by CAD/CAM PMMA-graphene, while the lowest micro-mechanical features were registered for CAD/CAM multilayered PMMA.


Dental Update ◽  
2021 ◽  
Vol 48 (8) ◽  
pp. 643-650
Author(s):  
Petros Mylonas ◽  
Jing Zhang ◽  
Avijit Banerjee

Glass-polyalkenoate cements, also known as glass-ionomer cements (GICs), are one of the most commonly used bio-interactive restorative dental materials, having been available since the 1970s. With the promotion of minimally invasive operative dentistry (MID), and the reduction in the use of dental amalgam worldwide, the popularity of these materials has grown significantly in recent years. This article outlines the basics and clinical importance of GIC material science, and provides an overview of their use in restorative dentistry. CPD/Clinical Relevance: GICs are versatile dental biomaterials that require correct case selection, material handling and placement technique to ensure optimal clinical success.


2021 ◽  
Vol 22 (12) ◽  
pp. 6552
Author(s):  
Esra Yuca ◽  
Sheng-Xue Xie ◽  
Linyong Song ◽  
Kyle Boone ◽  
Nilan Kamathewatta ◽  
...  

Resin-based composite materials have been widely used in restorative dental materials due to their aesthetic, mechanical, and physical properties. However, they still encounter clinical shortcomings mainly due to recurrent decay that develops at the composite-tooth interface. The low-viscosity adhesive that bonds the composite to the tooth is intended to seal this interface, but the adhesive seal is inherently defective and readily damaged by acids, enzymes, and oral fluids. Bacteria infiltrate the resulting gaps at the composite-tooth interface and bacterial by-products demineralize the tooth and erode the adhesive. These activities lead to wider and deeper gaps that provide an ideal environment for bacteria to proliferate. This complex degradation process mediated by several biological and environmental factors damages the tooth, destroys the adhesive seal, and ultimately, leads to failure of the composite restoration. This paper describes a co-tethered dual peptide-polymer system to address composite-tooth interface vulnerability. The adhesive system incorporates an antimicrobial peptide to inhibit bacterial attack and a hydroxyapatite-binding peptide to promote remineralization of damaged tooth structure. A designer spacer sequence was incorporated into each peptide sequence to not only provide a conjugation site for methacrylate (MA) monomer but also to retain active peptide conformations and enhance the display of the peptides in the material. The resulting MA-antimicrobial peptides and MA-remineralization peptides were copolymerized into dental adhesives formulations. The results on the adhesive system composed of co-tethered peptides demonstrated both strong metabolic inhibition of S. mutans and localized calcium phosphate remineralization. Overall, the result offers a reconfigurable and tunable peptide-polymer hybrid system as next-generation adhesives to address composite-tooth interface vulnerability.


Author(s):  
Débora Michelle Gonçalves de Amorim ◽  
Aretha Heitor Veríssimo ◽  
Anne Kaline Claudino Ribeiro ◽  
Rodrigo Othávio de Assunção e Souza ◽  
Isauremi Vieira de Assunção ◽  
...  

AbstractTo investigate the impact of radiotherapy on surface properties of restorative dental materials. A conventional resin composite—CRC (Aura Enamel), a bulk-fill resin composite—BFRC (Aura Bulk-fill), a conventional glass ionomer cement—CGIC (Riva self cure), and a resin-modified glass ionomer cement—RMGIC (Riva light cure) were tested. Forty disc-shaped samples from each material (8 mm diameter × 2 mm thickness) (n = 10) were produced according to manufacturer directions and then stored in water distilled for 24 h. Surface wettability (water contact angle), Vickers microhardness, and micromorphology through scanning electron microscopy (SEM) before and after exposition to ionizing radiation (60 Gy) were obtained. The data were statistically evaluated using the two-way ANOVA and Tukey posthoc test (p < 0.05). Baseline and post-radiation values of contact angles were statistically similar for CRC, BFRC, and RMGIC, whilst post-radiation values of contact angles were statistically lower than baseline ones for CGIC. Exposition to ionizing radiation statistically increased the microhardness of CRC, and statistically decreased the microhardness of CGIC. The surface micromorphology of all materials was changed post-radiation. Exposure to ionizing radiation negatively affected the conventional glass ionomer tested, while did not alter or improved surface properties testing of the resin composites and the resin-modified glass ionomer cement tested.


2021 ◽  
Vol 42 (02) ◽  
pp. 146-152
Author(s):  
Ritwika Kumar ◽  
Kunal Jha ◽  
Diplina Barman

AbstractThe concept of nanotechnology revolves around the delivery of nano particle incorporated drugs which are originally engineered technology. Nanoparticles are used for targeted delivery and controlled release of a curative agents. Nanotechnology is gaining importance and is likely to be routine element of regular dental clinics. Nanomaterials are being incorporated in toothpastes, mouth rinses for improved efficiencies. It has found its use in restorative dental materials, anti-cariogenic enamel surface polishing agents, implant materials, etc. Few nanoparticles possess antimicrobial propertiesand intercepts bacterial activity. Nano dentistry is cost-effectiveness and timesaving compared to other techniques. Nano particles have also been beneficial to annihilate drug resistance, prevention of metastasis or lesion recurrence by earmarking malignant stem cells. Remarkable achievements were made in using nanoparticles for detecting and treating multiple variety of malignancies including colon cancer, prostate cancer, lung cancer, breast cancer, head and neck cancer, etc. This review was made to highlight the various clinical applications of nanotechnology in the diagnosis and curative care for oral cancer.


2021 ◽  
Author(s):  
Ziwen Zhang ◽  
Megan M Jones ◽  
Camila Sabatini ◽  
Stephen T Vanyo ◽  
Ming Yang ◽  
...  

This work reports on polymer-antibiotic conjugates (PACs) as additives to resin-based restorative dental materials as a new strategy to convey sustained antibacterial character to these materials. Such antibacterial performance is...


Sign in / Sign up

Export Citation Format

Share Document