scholarly journals Current Status of the KURT and Long-term In-situ Experiments

Author(s):  
Geon Young Kim ◽  
Kyungsu Kim ◽  
Jong-Youl Lee ◽  
Won-Jin Cho ◽  
Jin-Seop Kim
2020 ◽  
Author(s):  
Dorothee Rebscher

<p>Mont Terri rock laboratory, located in the Swiss Jurassic Mountains, was established with the focus on the investigation and analysys of the properties of argillaceous formations. The scope of Opalinus Clay as a safe, potential option for nuclear waste disposal was broaden, as the behaviour of claystone is of high interest also in the context of caprocks, and hence, for many dynamical processes in the subsurfaces. Extensive research has been performed already for more than 20 years by the partners of the Mont Terri Consortium. These close cooperations cover a broad range of scientific aspects using numerical modelling, laboratory studies, and last not least in-situ experiments. Here, included in the long-term monitoring programme, new investigations apply tiltmeters. Since April 2019, platform tiltmeters have been installed at various locations within the galleries and niches of Mont Terri. The biaxial instruments have resolutions of 1 nrad and 0.1 µrad, respectively (Applied Geomechanics and Lippmann Geophysikalische Messgeräte). The tilt measurements are embedded within various experiments contributing to specific, multiparametrical studies. However, the growing tilt network as a whole will also provide novel information of the rock laboratory. The different time-scales of interest include long-term observations of yearly and decadal variability. So far tilt signals were identified due to excavations during the recent enlargement of the laboratory, earthquake activity (Albania), and local effects. First results of these quasi-continuous recordings will be presented.</p>


2008 ◽  
Vol 1107 ◽  
Author(s):  
Ingo Blechschmidt ◽  
Stratis Vomvoris ◽  
Joerg Rueedi ◽  
Andrew James Martin

AbstractThe Grimsel Test Site owned and operated by Nagra is located in the Swiss Alps (www.grimsel.com). The Sixth Phase of investigations was started in 2003 with a ten-year planning horizon. With the investigations and projects of Phase VI the focus has shifted more towards projects assessing perturbation effects of repository implementation and projects evaluating and demonstrating engineering and operational aspects of the repository system. More than 17 international partners participate in the various projects, which form the basic organisational “elements” of Phase VI. Scientific and engineering interaction among the different projects is ensured via an annual meeting and several experimental team meetings throughout the year. On-going projects include: evaluation of full-scale engineered systems under simulated heat production and long-term natural saturation (NF-Pro/FEBEX), gas migration through engineered barrier systems (GMT, finished this year), emplacement of a shotcrete low-pH plug (ESDRED/Module IV), testing and evaluation of standard monitoring techniques (TEM).Numerous in-situ experiments with inactive tracers and radionuclides were successfully carried out over the past few years at the Grimsel Test Site (GTS). For the GTS Phase VI, three major projects have been initiated to simulate the long-term behaviour of contamination plumes in the repository near-field and the surrounding host rock:•The CFM (Colloid Formation and Migration) project, which focuses on colloid generation and migration from a bentonite source doped with radionuclides•The LCS (Long-Term Cement Studies) project, which aims at improving the understanding of low-pH cement interaction effects in water conducting features•The LTD (Long-Term Diffusion) project, which aims at in-situ verification of long-term diffusion concepts for radionuclidesAs Phase VI approaches its mid-term point, what are the next steps planned? The accomplishments assessed to date and the opportunities with the on-going projects as well as new projects – currently under discussion – are presented herein


2021 ◽  
Author(s):  
Xiaodong Ma ◽  
Marian Hertrich ◽  
Florian Amann ◽  
Kai Bröker ◽  
Nima Gholizadeh Doonechaly ◽  
...  

Abstract. The increased interest in subsurface development (e.g., unconventional hydrocarbon, deep geothermal, waste disposal) and the associated (triggered or induced) seismicity calls for a better understanding of the hydro-seismo-mechanical coupling in fractured rock masses. Being able to bridge the knowledge gap between laboratory and reservoir scales, controllable meso-scale in situ experiments are deemed indispensable. In an effort to access and instrument rock masses of hectometer size, the Bedretto Underground Laboratory for Geosciences and Geoenergies (‘Bedretto Lab’) was established in 2018 in the existing Bedretto Tunnel (Ticino, Switzerland), with an average overburden of 1000 m. In this paper, we introduce the Bedretto Lab, its general setting and current status. Combined geological, geomechanical and geophysical methods were employed in a hectometer-scale rock mass explored by several boreholes to characterize the in situ conditions and internal structures of the rock volume. The rock volume features three distinct units, with the middle fault zone sandwiched by two relatively intact units. The middle fault zone unit appears to be a representative feature of the site, as similar structures repeat every several hundreds of meters along the tunnel. The lithological variations across the characterization boreholes manifest the complexity and heterogeneity of the rock volume, and are accompanied by compartmentalized hydrostructures and significant stress rotations. With this complexity, the characterized rock volume is considered characteristic of the heterogeneity that is typically encountered in subsurface exploration and development. The Bedretto Lab can adequately serve as a test-bed that allows for in-depth study of the hydro-seismo-mechanical response of fractured crystalline rock masses.


1990 ◽  
Vol 199 ◽  
Author(s):  
M. Drechsler

ABSTRACTA long term aim of this study is to overcome the difficulties to use electron microscopes (TEM, SEM) for in situ experiments, which includes (1) a preparation of initially clean surfaces, (2) a use of specimen micro-chambers, (3) in situ heating, (4) devices to produce and analyse reactions and (5) video registration. An interesting step in this direction is the replacement of the usual thin films by specimens in form of tips similar to those used in field emission devices. A tip is first prepared by electrolytic etching. Then the tip is cleaned and shaped in vacuum. This opens the possibility to visualize and measure kinetic phenomena up to higher temperatures than so far (1500 K and more). Examples of results are: (1) Surface matter fluxes and surface self-diffusion can be measured, (2) solid/solid interfaces and their displacements (reactions) can be measured, (3) grain boundary displacements and grain rotations can be measured and (4) periodic electric discharges between electrodes of 0.1 gim on specimens are prepared, visualized and explained.


Author(s):  
Václava Havlová

ÚJV Řež, a.s. as a company with a long term experience in radioactive waste management (RWM) has been running a comprehensive research programme, supporting development of deep geological repository (DGR) in the Czech Republic. Recently ÚJV Řež, a.s. research has focused on the different aspects of safety functions that DGR barriers should provide. Moreover, the research has also recently paid strong attention to real conditions that can be present in DGR (anaerobic reducing conditions, increased T due to heat generation by radioactive waste, contact of different materials within repository, real scale of the rock massive etc.). Both types of experiments, laboratory and in-situ experiments in underground laboratories, were included in the research programme. The presentation gives a brief overview of experimental trends, being conducted for materials and conditions, concerned in Czech repository concept.


2020 ◽  
Vol 171 ◽  
pp. 108750
Author(s):  
Wanwisa Limphirat ◽  
Narinthorn Wiriya ◽  
Surangrat Tonlublao ◽  
Sarunyu Chaichoy ◽  
Piyawat Pruekthaisong ◽  
...  

2020 ◽  
Author(s):  
Jobst Maßmann ◽  
Gesa Ziefle ◽  
Stephan Costabel ◽  
Markus Furche ◽  
Bastian Graupner ◽  
...  

<p>Claystone is characterized by a complex, highly coupled hydraulic-mechanical behavior. The physical understanding of the related effects is of great importance concerning the stability during the construction phase as well as for the safety assessment of the integrity of a potential repository for high-level nuclear waste. The rock laboratory Mont Terri, Switzerland, provides the unique possibility to conduct in-situ experiments in the Opalinus Clay for a broad international community. The experiment on the influence of humidity on the cyclic and long-term deformation behavior (CD-A experiment) is conducted in the new part of the rock laboratory, which has been finalized in 2019.</p><p>To compare the coupled hydraulic-mechanical effects under different conditions, two parallel oriented niches, called twins, have been excavated in autumn 2019. The twins have a length of 11 m and a diameter of 2.3 m and no shotcrete support. The first twin remains under “natural conditions”. Here, the atmospheric conditions are characterized by a seasonal change in air humidity and temperature. This leads to a desaturation of the claystone around the niche. The second twin is locked. In this area, the air conditions imply a high humidity and the desaturation of the claystone will be avoided as much as possible.</p><p>In both twins, a geological characterization of drill cores and of rocks exposed in the niches have been carried out. Furthermore, a long-term measurement program of the related parameters has been launched. It includes measurements of the air humidity, the temperature, the deformation (extensometer), the convergence of the niches, the pore water pressure (piezometer) and the water content (Taupe). Additionally, periodic measurements of the permeability, electrical resistivity (ERT), and nuclear magnetic resonance (NMR) on the niche walls as well as petrophysical analyses of drilled cores are planned. Seismic borehole measurements will also be carried out. The measuring program will be accompanied by the numerical simulation of the coupled hydraulic-mechanical effects in the vicinity of the niches. The comparison of the measurements with simulation results considering different model approaches should support the identification of significant physical effects of the complex coupled material behavior.</p><p>This contribution will focus on the observations during the excavation of the twin niches and analysis of the first measured data as well as numerical investigations carried out with OpenGeoSys.</p>


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


Sign in / Sign up

Export Citation Format

Share Document