Numerical assessment of seismic safety of liquid storage tanks and performance of base isolation system

2010 ◽  
Vol 35 (6) ◽  
pp. 759-772 ◽  
Author(s):  
Mohammad Ali Goudarzi ◽  
Saeed Alimohammadi
Author(s):  
Kengo Goda ◽  
Osamu Furuya ◽  
Kohei Imamura ◽  
Kenta Ishihana

At the present, base isolation system has been recognized by general earthquake resistant technique since the Great Hanshin Earthquake 1995. The seismic isolation will be aggressively applied to not only architectural and civil structures but also various structures, because the effectiveness on seismic safety had been demonstrated again in the Great East Japan Earthquake. In generally, although the base isolation system is divided into laminated rubber bearing type and friction sliding bearing type. In the case of former type, shape factor, maximum or minimum outer shapes and so on are restricted by the material characteristics in visco-elastic material. In general, the isolation structure is used in high damping rubber. However, we pay attention to base isolation using urethane elastomer. Urethane elastomer has excellent elasticity, mechanical strength, abrasion resistance, weather resistance, oil resistance, impact resistance the absorbent, anti-vibration and excellent low-temperature properties. Furthermore, it is possible to impart various characteristics by a combination of isocyanate and polyol and chain extender, requires no large-scale apparatus, it has the advantage molecular design is easy. In previous study, the research and development of laminated type base isolation device using urethane elastomer was carried out to upgrade a seismic safety for various structures. The fundamental characteristics was investigated from several loading test by using various experimental devices, and the design formula for the stiffness and equivalent damping coefficient is formulated as an approximate expression of mechanical characteristics until now. It was confirmed that urethane elastomer is not hardening up to 500% shear strain. Moreover, the experimental examination for aged deterioration in the urethane material has been continuously carried out. As the results, it was confirmed that the laminated type seismic isolation device using urethane elastomer is possible to develop as a practicable device from the stable mechanical properties as considering in design step. In this study, the small-scale laminated type base isolation device using urethane elastomer is advanced to the direction of further technical upgrading and of scale down for light-weight structure as a sever rack. The first stage, basic properties of the urethane elastomer has been investigated by loading test. Furthermore, the design equation is created by loading test using urethane elastomer. The validity of the design equation has been confirmed. The second stage, the compression creep test with laminated type base isolation device has been investigated to confirm an effect on light-weight mechanical devices.


2016 ◽  
Vol 24 (24) ◽  
pp. 5747-5764 ◽  
Author(s):  
Sina Safari ◽  
Reza Tarinejad

Seismic response of base isolated steel liquid storage tanks is investigated in this study by a stochastic approach in frequency domain. For the purpose of evaluating different frequency contents of seismic events on the responses of fixed and isolated tanks, the earthquake excitation is characterized by power spectral density function. Since earthquake is a random process, stochastic seismic analysis is used and root mean square response predicts behavior of system properly. Two types of isolation system are assumed and nonlinear behavior of base isolation systems are developed by an iterative statistical linearization scheme. The study demonstrates the influence of each characteristic parameter of the storage tanks and isolation system and also excitation features. It is confirmed that near-fault earthquake excitations amplify the overall response of the system. Base isolation is known as an effective technique to reduce responses appropriately. It is demonstrated that the sloshing responses of the tanks is significantly reduced by sliding bearing. Further, excitation parameters, PGV/PGA ratio of records and pulse period in near-fault ground motions, that represent differences in two sets of earthquakes are defined to recognize variation of responses.


2013 ◽  
Vol 353-356 ◽  
pp. 2039-2042
Author(s):  
Sun Ying ◽  
Jian Gang Sun ◽  
Li Fu Cui

To study the dynamic buckling characteristics of storage tank subjected to three-dimensional seismic excitation, selecting 50000m3 large vertical floating roof storage tanks as research object, the base isolation system was introduced and allowing for the impact of floating roof. The finite element models of non-isolation and base isolation storage tank were established respectively by ADINA. The seismic responses of these two types of storage tank were calculated and the numerical solutions were compared. The results indicate that the dynamic buckling modes of these two types of storage tank system belong to plastic buckling; base isolation measure can effectively increase the critical load value of dynamic buckling and plasticity yielding, the improve rates up to 38% and 60% respectively. The effectiveness of the base isolation can be verified from the angle of buckling.


Author(s):  
R. I. Skinner ◽  
G. H. McVerry

Inelastic deformation and hysteretic damping increase the earthquake resistance of structures beyond that provided by their elastic strength. For many structures the reserve flexibility and the damping could be supplied efficiently and reliably, by the use of special components. Special components are most effective when they are located at the interface between the lowest part of the building and the foundations. Recently developed hysteretic dampers, utilizing the plastic deformation of solid steel bars, may be combined with one of the many methods suggested for achieving base flexibility to give a practical and efficient base-isolation system. In addition to reducing the general level of attack a base-isolation system greatly reduces the variation in severity of
 attack resulting from differences in character between earthquakes. In view of the range of earthquake types to which a structure may be subjected this "standardization" of the earthquake attack is important, and is found to be particularly important for structures with a fundamental period of less than 0.4 seconds. A base-isolation system reduces ductility demands on a building, and minimizes its deformations. These changes improve building performance and allow much greater architectural freedom in the choice of the structural type and in its layout and detailing. Economies are increased and performance improved by using high-strength low-ductility structural configurations.


Author(s):  
Eren Uckan ◽  
Bulent Akbas ◽  
Fabrizio Paolacci ◽  
Jashue Shen ◽  
Emre Abalı

Liquid storage tanks are critical components of industrial facilities since damage to such structures may cause spreading of hazardous material and environmental pollution. Tanks exhibit mainly two different seismic behaviors one of which is the long period movements due to sloshing of the liquid and the other is the impulsive vibrations generated as a result of the fluid structure interaction phenomena at higher frequencies. The overall base shear is the combination of these two loads. The seismic base isolation aims to control the impulsive load as it has appreciable amount of contribution to the base shear values. Among various types, the curved surface sliding bearings (FPS) are commonly used in liquid tanks since provide isolation periods which is independent of the tank weight (liquid height). In this paper a parametric analysis has been performed to investigate the efficiency of FPS bearings. The numerical model is based on the Haroun and Housner’s simplified lumped parameter model in which the sloshing and fluid-tank interactions are modeled by convective and impulsive masses, respectively. The effectiveness of the isolation system was investigated under a series of ground motions, isolation periods and tank aspect (slenderness) ratios. Results indicated that depending on the characteristics of the ground motion, the response of the isolated tank can be reduced in appreciable amounts as compared to the conventionally constructed one. On the other hand, some detrimental effects were also observed in lower isolation periods (Tb=2s) particularly in medium slender tanks under near fault ground motions. This undesirable situation was avoided by using higher isolation periods (Tb =3s) without much affecting the bearing displacements.


Author(s):  
Kenta Ishihana ◽  
Osamu Furuya ◽  
Kengo Goda ◽  
Shohei Omata

At the present, base isolation system has been recognized by general earthquake resistant technique since the Great Hanshin Earthquake 1995. The seismic isolation will be aggressively applied to not only architectural and civil structures but also various structures, because the effectiveness on seismic safety had been demonstrated again in the Great East Japan Earthquake. In generally, although the base isolation system is divided into laminated rubber bearing type and friction sliding bearing type. In the case of former type, shape factor, maximum or minimum outer shapes and so on are restricted by the material characteristics in visco-elastic material. In previous study, the research and development of laminated type base isolation device using urethane elastomer was carried out to upgrade a seismic safety for various structures. The fundamental characteristics was investigated from several loading test by using various experimental devices, and the design formula for the stiffness and equivalent damping coefficient is formulated as an approximate expression of mechanical characteristics until now. The mechanical characteristics based on the loading test up to 500% shear strain using experimental specimen with 100 × 100 mm cross-sectional shape. It was confirmed that urethane elastomer is not hardening up to 500% shear strain. Moreover, the experimental examination for aged deterioration in the urethane material has been continuously carried out. As the results, it was confirmed that the laminated type seismic isolation device using urethane elastomer is possible to develop as a practicable device from the stable mechanical properties as considering in design step. In this study, the small-scale laminated type base isolation device using urethane elastomer is advanced to the direction of further technical upgrading and of scale down for light-weight structure as a sever rack. The first stage, basic properties of the urethane elastomer has been investigated by loading test. The second stage, the compression creep test with laminated type base isolation device has been investigated to confirm an effect on light-weight mechanical devices.


2020 ◽  
Vol 11 (1) ◽  
pp. 82
Author(s):  
Fabio Mazza ◽  
Mirko Mazza

Elastomeric bearings are commonly used in base-isolation systems to protect the structures from earthquake damages. Their design is usually developed by using nonlinear models where only the effects of shear and compressive loads are considered, but uncertainties still remain about consequences of the tensile loads produced by severe earthquakes like the near-fault ones. The present work aims to highlight the relapses of tension on the response of bearings and superstructure. To this end, three-, seven- and ten-storey r.c. framed buildings are designed in line with the current Italian seismic code, with a base-isolation system constituted of High-Damping-Rubber Bearings (HDRBs) designed for three values of the ratio between the vertical and horizontal stiffnesses. Experimental and analytical results available in literature are used to propose a unified nonlinear model of the HDRBs, including cavitation and post-cavitation of the elastomer. Nonlinear incremental dynamic analyses of the test structures are carried out using a homemade computer code, where other models of HDRBs considering only some nonlinear phenomena are implemented. Near-fault earthquakes with comparable horizontal and vertical components, prevailing horizontal component and prevailing vertical component are considered as seismic input. Numerical results highlight that a precautionary estimation of response parameters of the HDRBs is attained referring to the proposed model, while its effects on the nonlinear response of the superstructure are less conservative.


Sign in / Sign up

Export Citation Format

Share Document