scholarly journals Influence of Elastomeric Bearings in Tension on the Seismic Performance of Base-Isolated r.c. Buildings

2020 ◽  
Vol 11 (1) ◽  
pp. 82
Author(s):  
Fabio Mazza ◽  
Mirko Mazza

Elastomeric bearings are commonly used in base-isolation systems to protect the structures from earthquake damages. Their design is usually developed by using nonlinear models where only the effects of shear and compressive loads are considered, but uncertainties still remain about consequences of the tensile loads produced by severe earthquakes like the near-fault ones. The present work aims to highlight the relapses of tension on the response of bearings and superstructure. To this end, three-, seven- and ten-storey r.c. framed buildings are designed in line with the current Italian seismic code, with a base-isolation system constituted of High-Damping-Rubber Bearings (HDRBs) designed for three values of the ratio between the vertical and horizontal stiffnesses. Experimental and analytical results available in literature are used to propose a unified nonlinear model of the HDRBs, including cavitation and post-cavitation of the elastomer. Nonlinear incremental dynamic analyses of the test structures are carried out using a homemade computer code, where other models of HDRBs considering only some nonlinear phenomena are implemented. Near-fault earthquakes with comparable horizontal and vertical components, prevailing horizontal component and prevailing vertical component are considered as seismic input. Numerical results highlight that a precautionary estimation of response parameters of the HDRBs is attained referring to the proposed model, while its effects on the nonlinear response of the superstructure are less conservative.

2017 ◽  
Vol 21 (5) ◽  
pp. 675-693 ◽  
Author(s):  
Aruna Rawat ◽  
Naseef Ummer ◽  
Vasant Matsagar

Rolling base isolation system provides effective isolation to the structures from seismic base excitations by virtue of its low frictional resistance. Herein, dynamic analysis of flexible-shear type multi-storey building mounted on orthogonally placed elliptical rolling rod base isolation systems subjected to bi-directional components of near-fault earthquake ground motions is presented. The orthogonally placed rods would make it possible to resist the earthquake forces induced in the structure in both the horizontal directions. The curved surface of these elliptical rods has a self-restoring capability due to which the magnitude of peak isolator displacement and residual displacement is reduced. The roughness of the tempered curved surface of the rollers dissipates energy in motion due to frictional damping. The seismic performance of the multi-storey building mounted on the elliptical rolling rod base isolation system is compared with that mounted on the sliding pure-friction and cylindrical rolling rod systems. Parametric studies are conducted to examine the behavior of the building for different superstructure flexibilities, eccentricities of the elliptical rod, and coefficients of friction. It is concluded that the elliptical rolling rod base isolation system is effective in mitigation of damaging effects of the near-fault earthquake ground motions in the multi-storey buildings. Even under the near-fault earthquake ground motions, the base-isolated building mounted on the elliptical rolling rods shows considerable reduction in seismic response. The isolator displacement with the elliptical rolling rod base isolation system is less in comparison to the pure-friction and cylindrical rolling rod systems.


2011 ◽  
Vol 90-93 ◽  
pp. 1566-1575
Author(s):  
Zi Shu Dai

Conventional isolation systems may induce an excessive response in near-fault earthquakes. A new short time Fourier transformation (STFT) control algorithm for variable friction dampers (VFD) is developed to improve the performance of base isolation buildings in near-fault earthquakes. The STFT controller varies the clamping force in the VFD damper to achieve the response reduction. In addition, the STFT algorithm is implemented analytically on a multi degree of freedom system (MDOF) with laminated rubber bearings and variable friction dampers in Simulink environment. Three types of earthquakes representing a wide variety of ground motions are considered as the ground excitations in the simulation. The numerical show that, compared with conventional isolation systems, the semi-active isolation system controlled by the STFT algorithm can reduce the excessive response in near-fault earthquakes effectively.


Author(s):  
S. Kitamura ◽  
M. Morishita ◽  
S. Moro

A structural concept of a vertical component isolation system for fast reactors, assuming a building adopting a horizontal base isolation system, has been studied. In this concept, a reactor vessel and major primary components are suspended from a large common deck supported by isolation devices consisting of large coned disk springs. The outline of the vertical component seismic isolation system and a series of model tests with full scale coned disk spring and damper are shown in this paper.


2013 ◽  
Vol 743 ◽  
pp. 105-109
Author(s):  
Wei Gu ◽  
Xiao Dong Wen ◽  
Wei Cai ◽  
Bin Liu

The objective of this research is to investigate the dynamic responses of the masonry structure with base-isolation system under the vertical earthquake. Through inter-story shear model with the multi-degree of freedom, the equation of motion and the distinguishing rule between slide and joggle were established. The effects of vertical component of earthquake on the response of pure-friction base-isolated structure were analyzed. Results show that the inter-story displacement, inter-story shear force and acceleration at lower layers are increased, but the response value at topper layers and the maximum displacement at isolated layer are less affected. The maximum displacement at isolated layer is mainly affected by frictional coefficient, sort condition and earthquake intensity.


Author(s):  
S. Kitamura ◽  
M. Morishita

A structural concept of a vertical component isolation system for fast reactors, assuming a building adopting a horizontal base isolation system, has been studied. In this concept, a reactor vessel and major primary components are suspended from a large common deck supported by isolation devices consisting of large coned disk springs. A series of experiments using a simple model for the confirmation of the isolation effect, and a case study of vertical isolation device and plant layout are shown in this paper.


2021 ◽  
Vol 879 ◽  
pp. 189-201
Author(s):  
M.A. Amir ◽  
N.H. Hamid

Recently, there are a lot of technological developments in the earthquake engineering field to reduce structural damage and one of them is a base isolation system. The base isolation system is one of the best technologies for the safety of human beings and properties under earthquake excitations. The aim of this paper is to review previous research works on simulation of base isolation systems for RC buildings and their efficiency in the safety of these buildings. Base isolation decouples superstructure from substructure to avoid transmission of seismic energy to the superstructure of RC buildings. The most effective way to assess the base isolation system for RC building under different earthquake excitations is by conducting experiment work that consumes more time and money. Many researchers had studied the behavior of base isolation system for structure through modeling the behavior of the base isolation in which base isolator is modeled through numerical models and validated through experimental works. Previous researches on the modeling of base isolation systems of structures had shown similar outcomes as the experimental work. These studies indicate that base isolation is an effective technology in immunization of structures against earthquakes.


2012 ◽  
Vol 234 ◽  
pp. 96-101 ◽  
Author(s):  
Donato Cancellara ◽  
Fabio de Angelis

In the present work we have analyzed a particular base isolation system for the seismic protection of a multi-storey reinforced concrete (RC) building. The viscous dampers and friction sliders are the devices adopted in parallel for realizing the base isolation system. The base isolation structure has been designed and verified according to European seismic code EC8 and by considering for the friction sliders the influence of the sliding velocity on the value of the friction coefficient. A dynamic nonlinear analysis for a three-dimensional base isolated structure has been performed. Recorded accelerograms for bi-directional ground motions have been used which comply with the requirements imposed by EC8 for the representation of a seismic action in a time history analysis. In this paper a comparative analysis is presented between the base isolated structure with the described hybrid base isolation system and the traditional fixed base structure.


Sign in / Sign up

Export Citation Format

Share Document