Numerical simulation of reinforced concrete nuclear containment under extreme loads

2016 ◽  
Vol 58 (5) ◽  
pp. 799-823 ◽  
Author(s):  
Jorge Luis Palomino Tamayo ◽  
Armando Miguel Awruch
2021 ◽  
Vol 11 (3) ◽  
pp. 1112
Author(s):  
Nikita Belyakov ◽  
Olga Smirnova ◽  
Aleksandr Alekseev ◽  
Hongbo Tan

The problem of damage accumulation in fiber-reinforced concrete to structures supporting underground workings and tunnel linings against dynamic loading is insufficiently studied. The mechanical properties were determined and the mechanism of destruction of fiber-reinforced concrete with different reinforcement parameters is described. The parameters of the Concrete Damaged Plasticity model for fiber-reinforced concrete at different reinforcement properties are based on the results of lab experiments. Numerical simulation of the composite concrete was performed in the Simulia Abaqus software package (Dassault Systemes, Vélizy-Villacoublay, France). Modeling of tunnel lining based on fiber-reinforced concrete was performed under seismic loading.


2005 ◽  
Vol 83 (31-32) ◽  
pp. 2609-2631 ◽  
Author(s):  
X.S. Tang ◽  
J.R. Zhang ◽  
C.X. Li ◽  
F.H. Xu ◽  
J. Pan

2014 ◽  
Vol 1004-1005 ◽  
pp. 1474-1477
Author(s):  
Ze Ying Yang ◽  
Jia You Liu ◽  
Yi Dong Zhang ◽  
Jian Bo Qu

By numerical simulation and contrasting with experimental conclusions, mechanical models in every loading stage of CFRP reinforced concrete bridge deck were established. The results showed that, numerical simulation results of non-prestressed bridge decks fitted corresponding test results well. The stiffness of prestressed structures had been greatly improved than non-prestressed structures, so the high strength performance of CFRP had been used more effectively.


2013 ◽  
Vol 686 ◽  
pp. 261-265 ◽  
Author(s):  
M. Ihsan ◽  
Syarizal Fonna ◽  
M. Ridha ◽  
Syifaul Huzni ◽  
A.K. Arrifin

The corrosion of structures is needed to be identified early to prevent any severe damage of buildings. The conventional technique such as potential mapping for diagnosing of reinforced concrete corrosion has been used widely in the field. However, the method has limitation such as less accuracy, laborious and time-consuming. This study is conducted to develop boundary element method 3 dimensions by considering polarization curves of anode and cathode for corrosion simulation and analyzed the influences of anode profiles for RC corrosion simulation. In this method, the potential in concrete domain was modeled by Laplace’s equation. The anode and cathode areas were represented by each polarization curves. The numerical simulation result shows that the boundary element method 3 dimensions successfully solved the Laplace’s equation in order to simulate corrosion phenomenon of reinforced concrete. The influences of anode profiles for RC corrosion simulation have been analyzed. Further works are needed to reduce the computational effort of corrosion simulation.


Sign in / Sign up

Export Citation Format

Share Document