scholarly journals Numerical Study on Stress Concentration Effect in Rapid Evaluation of Fatigue Limit through Temperature Evolution

2012 ◽  
Vol 6 (4) ◽  
pp. 299-313 ◽  
Author(s):  
Hung Anh LY ◽  
Hirotsugu INOUE ◽  
Yousuke IRIE
2021 ◽  
Vol 118 (13) ◽  
pp. 132902
Author(s):  
Zhonghui Yu ◽  
Zhaoqiang Chu ◽  
Jikun Yang ◽  
Mohammad Javad Pourhosseini Asl ◽  
Zhanmiao Li ◽  
...  

2017 ◽  
Vol 4 (5) ◽  
pp. 17-00009-17-00009 ◽  
Author(s):  
Ryogo KAWAI ◽  
Takumi YOSHIKAWA ◽  
Yu KUROKAWA ◽  
Yousuke IRIE ◽  
Hirotsugu INOUE

Author(s):  
Yifan Gao ◽  
Wei Chen ◽  
Yong Bai

Abstract A new theoretical model was proposed to calculate the burst pressure of steel strip reinforced flexible composite pipes (steel strip PSP) based on the thin wall cylindrical shell theory and the squeeze pressure expression between layers was derived. The radial displacement discontinuity of pipe wall in pipe-end fitting joint area takes in account in this model which could result in Stress Concentration Effect (SCE) in reinforcement layers. The SCE is caused by swaging end fitting clamped tightly at the end of the pipe. The result of the hoop strain in the joint area calculated by this model is greater than the one calculated by the classic elastic model, which leads to relative conservative burst strength of the pipe. The hoop stress variation via internal pressure on innermost reinforcement layer is introduced to predict the burst strength of the pipe. As the stress in the joint area reaches its ultimate strength, the strain on the same layer in the point far away from this area (x→∞) is extracted and the corresponding internal pressure is obtained as the burst strength of the pipe. The calculated data from two models were compared with the experiment results and the proposed new model showed better accuracy than the classic elastic model. Final additional parametric studies were conducted, while the effect of the pipe diameter, the winding angle, the number and thickness of the reinforcement layer on the burst strength of the pipe were studied. Useful conclusions were drawn for the design and application of the steel strip PSP in offshore engineering.


Author(s):  
Renfeng Zhao ◽  
Shengdun Zhao ◽  
Bin Zhong ◽  
Yong Tang

The traditional cropping processes have some disadvantages, such as poor surface quality, low yield, the waste of materials, and high energy consumption. The low cycle fatigue precision cropping process with circumferential loading, which is a new type of precision cropping process, is studied. According to the stress concentration effect of the V-shape notch, the fatigue crack on the tip of the V-shape notch is prompted to initiate and extend. The working principle of the precision cropping machine is described. The criterion that whether the crack on the root of the V-shape notch is initiated or not is provided under the effect of low cycle fatigue loading. The materials which are 0.2%C steel, H59 copper, 0.45%C steel, 20Cr steel, and LY12 aluminum are tested under two control curves. The initiation and propagation of crack are accelerated and the good cross sections of the metal bar are obtained. The results show that the mean stress of the metal bar in the cropping process can be effectively reduced due to the stress concentration effect of the V-shape notch. The metal bar’s stable crack propagation and fracture can be obtained when constantly increasing striking displacement and reducing the striking frequency in the cropping process at the same time in the process.


Sign in / Sign up

Export Citation Format

Share Document