scholarly journals Effects of Cycle Frequency on Fretting Fatigue Life of Carbon Steel

1969 ◽  
Vol 12 (54) ◽  
pp. 1300-1308 ◽  
Author(s):  
Kichiro ENDO ◽  
Hozumi GOTO ◽  
Takuo NAKAMURA
2007 ◽  
Vol 353-358 ◽  
pp. 134-137
Author(s):  
Wei Ming Sun ◽  
Shui Sheng Chen ◽  
Li Qun Tu

The effect of contact pressure on fretting fatigue in quenched and tempered 45-carbon steel is studied. With an increase in contact pressure, fretting fatigue life is decreased quickly at low contact pressures; however it almost unchanged at high contact pressures. With an increase in cyclic stress amplitude, fretting fatigue life decreased. In the test, concavity is formed at the fretted area accompanying wear. The main crack is initiated at the outer edge corner of the concavity at high contact pressures, and initiated at the middle portion of the fretted area at low contact pressures.


Author(s):  
Natalia Gonçalves Torres ◽  
Vinícius Rodrigues ◽  
Edgar Mamiya

1987 ◽  
Vol 109 (3) ◽  
pp. 244-251 ◽  
Author(s):  
J. Wittenauer ◽  
O. D. Sherby

Laminates based on ultrahigh carbon steel were prepared and found to exhibit enhanced fatigue life as compared to a monolithic reference material. This result was achieved through the insertion of weak interlaminar regions of copper into the layered material during preparation of the laminates. The presence of these regions allowed for the operation of a delamination mechanism in advance of the propagating fatigue crack. The result was interlaminar separation and associated crack blunting. Stress-life curves show that an increase in life by as much as a factor of four is achieved for these materials when compared to monolithic specimens of similar processing history.


2010 ◽  
Vol 452-453 ◽  
pp. 601-604
Author(s):  
Muhammed Sohel Rana ◽  
Md. Shafiul Ferdous ◽  
Chobin Makabe ◽  
Masaki Fujikawa

The enhancement method of fatigue life and the crack initiate and growth behavior of a holed specimen was investigated by using the 2024 Aluminum alloy and 0.45% Carbon steel. The purpose of present study is to propose a simple technical method for enhancement of fatigue life in a notched specimen. Also, the effect of local plastic deformation by cold work on fatigue crack initiation behavior was examined. This paper presents a basic experimental kinematic cold expansion method by inserting and removing a pin through the specimen hole. The shape of cross-section of pin was a circle or an ellipse. It was shown that the fatigue life of the specimen with the cold-worked hole was longer than that of the specimen with non-cold-worked hole for the case of same stress level in aluminum alloy and carbon steel. Also, the fatigue strength was higher in the case of the cold expanded hole. In this study, a methodology of lengthening of fatigue life of holed specimen is shown. Also, the improvement conditions of fatigue life were significantly affected by shape of pin, local hardening and residual stress conditions. The fatigue life improvement of the damaged component of structures was studied.


2008 ◽  
Vol 587-588 ◽  
pp. 971-975 ◽  
Author(s):  
M. Buciumeanu ◽  
A.S. Miranda ◽  
F.S. Silva

The main objective of this work was to study the influence of the wear properties of two commercial alloys (CK45 and Al7175) on their fretting fatigue behavior. It is verified the effect of material local degradation by wear on a fatigue strength reduction factor, namely the stress concentration factor, and on the overall fretting fatigue life of these materials. The fretting fatigue phenomenon is a synergetic effect between wear and fatigue. It is dependent on both the fatigue and the wear properties of the materials. Material properties promoting an increase in wear resistance should enhance fretting fatigue life.


2010 ◽  
Vol 32 (12) ◽  
pp. 1937-1947 ◽  
Author(s):  
Patrick J. Golden ◽  
Harry R. Millwater ◽  
Xiaobin Yang

2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881101 ◽  
Author(s):  
Yaliang Liu ◽  
Yibo Sun ◽  
Yang Sun ◽  
Hongji Xu ◽  
Xinhua Yang

Spot welding of dissimilar materials can utilize the respective advantage comprehensively, of which reliable prediction of fatigue life is the key issue in the structure design and service process. Taking into account almost all the complex factors that have effects on the fatigue behavior such as load level, thickness, welding nugget diameter, vibrational frequency, and material properties, this article proposed an energy dissipation-based method that is able to predict the fatigue life for spot-welded dissimilar materials rapidly. In order to obtain the temperature gradient, the temperature variations of four-group spot-welded joint of SUS301 L-DLT stainless steel and Q235 carbon steel during high-cycle fatigue tests were monitored by thermal infrared scanner. Specifically, temperature variation disciplines of specimen surface were divided into four stages: temperature increase, temperature decrease, continuous steady increase in temperature, and ultimate drop after the fracture. The material constant C that a spot-welded joint of dissimilar material needs to reach fracture is 0.05425°C·mm3. When the specimen was applied higher than the fatigue limit, the highest error between experimental values and predicted values is 18.90%, and others are lower than 10%. Therefore, a good agreement was achieved in fatigue life prediction between the new method and the validation test results.


Sign in / Sign up

Export Citation Format

Share Document